Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the correct transformation of the function [tex]\( f(x) \)[/tex] into [tex]\( g(x) \)[/tex] where [tex]\( g(x) = f\left(\frac{1}{3} x\right) \)[/tex], let's analyze how the given transformation affects the graph:
1. Understand the Transformation:
- The function [tex]\( g(x) \)[/tex] is defined as [tex]\( f\left(\frac{1}{3} x\right) \)[/tex].
- Here, [tex]\( \frac{1}{3} x \)[/tex] indicates that the input [tex]\( x \)[/tex] in the function [tex]\( f \)[/tex] is being multiplied by [tex]\( \frac{1}{3} \)[/tex].
2. Effect on the Graph:
- When the input [tex]\( x \)[/tex] is multiplied by a number [tex]\( k \)[/tex] inside the function [tex]\( f \)[/tex], the graph of [tex]\( f(x) \)[/tex] is affected horizontally.
- Specifically, if [tex]\( k = \frac{1}{3} \)[/tex], this implies a horizontal transformation.
3. Horizontal Scaling:
- If [tex]\( k \)[/tex] is a fraction between 0 and 1, it typically compresses the graph horizontally. However, because the multiplication here is inside the function (i.e., [tex]\( f \)[/tex] is applied to [tex]\( \frac{1}{3} x \)[/tex]), it results in expanding the graph of [tex]\( f(x) \)[/tex] by a factor of [tex]\( \frac{1}{k} \)[/tex], which in this case is 3.
- Therefore, the graph of the function [tex]\( f \)[/tex] is stretched horizontally by a factor of 3.
4. Conclusion:
- Among the given choices, the correct statement describing this transformation is:
B. The graph of function [tex]\( f \)[/tex] is stretched horizontally by a scale factor of 3 to create the graph of function [tex]\( g \)[/tex].
So, the correct answer is B.
1. Understand the Transformation:
- The function [tex]\( g(x) \)[/tex] is defined as [tex]\( f\left(\frac{1}{3} x\right) \)[/tex].
- Here, [tex]\( \frac{1}{3} x \)[/tex] indicates that the input [tex]\( x \)[/tex] in the function [tex]\( f \)[/tex] is being multiplied by [tex]\( \frac{1}{3} \)[/tex].
2. Effect on the Graph:
- When the input [tex]\( x \)[/tex] is multiplied by a number [tex]\( k \)[/tex] inside the function [tex]\( f \)[/tex], the graph of [tex]\( f(x) \)[/tex] is affected horizontally.
- Specifically, if [tex]\( k = \frac{1}{3} \)[/tex], this implies a horizontal transformation.
3. Horizontal Scaling:
- If [tex]\( k \)[/tex] is a fraction between 0 and 1, it typically compresses the graph horizontally. However, because the multiplication here is inside the function (i.e., [tex]\( f \)[/tex] is applied to [tex]\( \frac{1}{3} x \)[/tex]), it results in expanding the graph of [tex]\( f(x) \)[/tex] by a factor of [tex]\( \frac{1}{k} \)[/tex], which in this case is 3.
- Therefore, the graph of the function [tex]\( f \)[/tex] is stretched horizontally by a factor of 3.
4. Conclusion:
- Among the given choices, the correct statement describing this transformation is:
B. The graph of function [tex]\( f \)[/tex] is stretched horizontally by a scale factor of 3 to create the graph of function [tex]\( g \)[/tex].
So, the correct answer is B.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.