At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve this problem, we need to follow the steps to find the area of a trapezoid using the provided formula [tex]\( A = \frac{1}{2} (b_1 + b_2) h \)[/tex]. Let's work through this step-by-step.
1. Identify the given values:
- The length of the first base ([tex]\(b_1\)[/tex]) is 3.6 cm.
- The length of the second base ([tex]\(b_2\)[/tex]) is [tex]\( 12 \frac{1}{3} \)[/tex] cm. Converting this mixed number to an improper fraction, we have:
[tex]\[ 12 \frac{1}{3} = 12 + \frac{1}{3} = 12.3333 \text{ cm approximately}. \][/tex]
- The height ([tex]\(h\)[/tex]) of the trapezoid is [tex]\(\sqrt{5} \, \text{cm}\)[/tex].
2. Calculate the sum of the bases:
[tex]\[ b_1 + b_2 = 3.6 + 12.3333 = 15.9333 \text{ cm}. \][/tex]
3. Calculate the area using the formula:
[tex]\[ A = \frac{1}{2} (b_1 + b_2) h. \][/tex]
Substituting the values:
[tex]\[ A = \frac{1}{2} (15.9333) \sqrt{5}. \][/tex]
Since [tex]\( \sqrt{5} \)[/tex] is approximately 2.2361, the final step involves computing:
[tex]\[ A = \frac{1}{2} \times 15.9333 \times 2.2361 \approx 17.8140 \, \text{cm}^2. \][/tex]
4. Reason for the area being irrational:
- The height ([tex]\(\sqrt{5}\)[/tex]) is an irrational number.
- When this irrational number (the height) is multiplied by rational numbers (the bases' sum), the resulting product is irrational.
Thus, the correct justification for the area being irrational is:
- The height is irrational, and it is multiplied by the other rational dimensions.
In conclusion, the area of the trapezoid is approximately [tex]\( 17.8140 \)[/tex] square centimeters, and this area is irrational because the height ([tex]\(\sqrt{5}\)[/tex]) is irrational, and it is multiplied by the other rational dimensions (the bases' sum).
1. Identify the given values:
- The length of the first base ([tex]\(b_1\)[/tex]) is 3.6 cm.
- The length of the second base ([tex]\(b_2\)[/tex]) is [tex]\( 12 \frac{1}{3} \)[/tex] cm. Converting this mixed number to an improper fraction, we have:
[tex]\[ 12 \frac{1}{3} = 12 + \frac{1}{3} = 12.3333 \text{ cm approximately}. \][/tex]
- The height ([tex]\(h\)[/tex]) of the trapezoid is [tex]\(\sqrt{5} \, \text{cm}\)[/tex].
2. Calculate the sum of the bases:
[tex]\[ b_1 + b_2 = 3.6 + 12.3333 = 15.9333 \text{ cm}. \][/tex]
3. Calculate the area using the formula:
[tex]\[ A = \frac{1}{2} (b_1 + b_2) h. \][/tex]
Substituting the values:
[tex]\[ A = \frac{1}{2} (15.9333) \sqrt{5}. \][/tex]
Since [tex]\( \sqrt{5} \)[/tex] is approximately 2.2361, the final step involves computing:
[tex]\[ A = \frac{1}{2} \times 15.9333 \times 2.2361 \approx 17.8140 \, \text{cm}^2. \][/tex]
4. Reason for the area being irrational:
- The height ([tex]\(\sqrt{5}\)[/tex]) is an irrational number.
- When this irrational number (the height) is multiplied by rational numbers (the bases' sum), the resulting product is irrational.
Thus, the correct justification for the area being irrational is:
- The height is irrational, and it is multiplied by the other rational dimensions.
In conclusion, the area of the trapezoid is approximately [tex]\( 17.8140 \)[/tex] square centimeters, and this area is irrational because the height ([tex]\(\sqrt{5}\)[/tex]) is irrational, and it is multiplied by the other rational dimensions (the bases' sum).
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.