Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the relationship between set [tex]\( C \)[/tex] and set [tex]\( D \)[/tex], we need to examine the elements of each set.
1. Set [tex]\( C \)[/tex] is given as [tex]\( \{1, 2, 3, 4, 5, 6, 7, 8\} \)[/tex].
2. Set [tex]\( D \)[/tex] is given as [tex]\( \{2, 4, 6, 8\} \)[/tex].
To find the relationship, let's see if all elements of set [tex]\( D \)[/tex] are contained in set [tex]\( C \)[/tex]:
- The element 2 is in set [tex]\( C \)[/tex].
- The element 4 is in set [tex]\( C \)[/tex].
- The element 6 is in set [tex]\( C \)[/tex].
- The element 8 is in set [tex]\( C \)[/tex].
Since all elements of set [tex]\( D \)[/tex] are contained in set [tex]\( C \)[/tex], set [tex]\( D \)[/tex] is a subset of set [tex]\( C \)[/tex].
We use the subset notation ([tex]\(\subseteq\)[/tex]) to indicate this relationship. Therefore, the relationship between set [tex]\( C \)[/tex] and set [tex]\( D \)[/tex] is:
[tex]\[ D \subseteq C \][/tex]
So, the correct notation to show the relationship between sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex] is:
[tex]\[ \boxed{D \subseteq C} \][/tex]
1. Set [tex]\( C \)[/tex] is given as [tex]\( \{1, 2, 3, 4, 5, 6, 7, 8\} \)[/tex].
2. Set [tex]\( D \)[/tex] is given as [tex]\( \{2, 4, 6, 8\} \)[/tex].
To find the relationship, let's see if all elements of set [tex]\( D \)[/tex] are contained in set [tex]\( C \)[/tex]:
- The element 2 is in set [tex]\( C \)[/tex].
- The element 4 is in set [tex]\( C \)[/tex].
- The element 6 is in set [tex]\( C \)[/tex].
- The element 8 is in set [tex]\( C \)[/tex].
Since all elements of set [tex]\( D \)[/tex] are contained in set [tex]\( C \)[/tex], set [tex]\( D \)[/tex] is a subset of set [tex]\( C \)[/tex].
We use the subset notation ([tex]\(\subseteq\)[/tex]) to indicate this relationship. Therefore, the relationship between set [tex]\( C \)[/tex] and set [tex]\( D \)[/tex] is:
[tex]\[ D \subseteq C \][/tex]
So, the correct notation to show the relationship between sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex] is:
[tex]\[ \boxed{D \subseteq C} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.