Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the factors of the polynomial [tex]\(x^3-12x^2-2x+24\)[/tex] by grouping, let's follow these steps:
1. Group the terms in pairs:
[tex]\[ x^3 - 12x^2 - 2x + 24 = (x^3 - 12x^2) + (-2x + 24) \][/tex]
2. Factor out the greatest common factor (GCF) from each pair:
For the first pair [tex]\(x^3 - 12x^2\)[/tex]:
[tex]\[ x^3 - 12x^2 = x^2(x - 12) \][/tex]
For the second pair [tex]\(-2x + 24\)[/tex]:
[tex]\[ -2x + 24 = -2(x - 12) \][/tex]
So, the expression now looks like:
[tex]\[ x^3 - 12x^2 - 2x + 24 = x^2(x - 12) - 2(x - 12) \][/tex]
3. Factor out the common binomial factor [tex]\((x - 12)\)[/tex]:
[tex]\[ x^2(x - 12) - 2(x - 12) = (x^2 - 2)(x - 12) \][/tex]
Hence, the factorization of the polynomial [tex]\( x^3 - 12x^2 - 2x + 24 \)[/tex] by grouping is:
[tex]\[ \boxed{x^2(x - 12) - 2(x - 12)} \][/tex]
So, the correct option that shows one way to determine the factors of [tex]\( x^3-12x^2-2x+24 \)[/tex] by grouping is:
[tex]\[ x^2(x-12)-2(x-12) \][/tex]
1. Group the terms in pairs:
[tex]\[ x^3 - 12x^2 - 2x + 24 = (x^3 - 12x^2) + (-2x + 24) \][/tex]
2. Factor out the greatest common factor (GCF) from each pair:
For the first pair [tex]\(x^3 - 12x^2\)[/tex]:
[tex]\[ x^3 - 12x^2 = x^2(x - 12) \][/tex]
For the second pair [tex]\(-2x + 24\)[/tex]:
[tex]\[ -2x + 24 = -2(x - 12) \][/tex]
So, the expression now looks like:
[tex]\[ x^3 - 12x^2 - 2x + 24 = x^2(x - 12) - 2(x - 12) \][/tex]
3. Factor out the common binomial factor [tex]\((x - 12)\)[/tex]:
[tex]\[ x^2(x - 12) - 2(x - 12) = (x^2 - 2)(x - 12) \][/tex]
Hence, the factorization of the polynomial [tex]\( x^3 - 12x^2 - 2x + 24 \)[/tex] by grouping is:
[tex]\[ \boxed{x^2(x - 12) - 2(x - 12)} \][/tex]
So, the correct option that shows one way to determine the factors of [tex]\( x^3-12x^2-2x+24 \)[/tex] by grouping is:
[tex]\[ x^2(x-12)-2(x-12) \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.