Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the factors of the polynomial [tex]\(x^3-12x^2-2x+24\)[/tex] by grouping, let's follow these steps:
1. Group the terms in pairs:
[tex]\[ x^3 - 12x^2 - 2x + 24 = (x^3 - 12x^2) + (-2x + 24) \][/tex]
2. Factor out the greatest common factor (GCF) from each pair:
For the first pair [tex]\(x^3 - 12x^2\)[/tex]:
[tex]\[ x^3 - 12x^2 = x^2(x - 12) \][/tex]
For the second pair [tex]\(-2x + 24\)[/tex]:
[tex]\[ -2x + 24 = -2(x - 12) \][/tex]
So, the expression now looks like:
[tex]\[ x^3 - 12x^2 - 2x + 24 = x^2(x - 12) - 2(x - 12) \][/tex]
3. Factor out the common binomial factor [tex]\((x - 12)\)[/tex]:
[tex]\[ x^2(x - 12) - 2(x - 12) = (x^2 - 2)(x - 12) \][/tex]
Hence, the factorization of the polynomial [tex]\( x^3 - 12x^2 - 2x + 24 \)[/tex] by grouping is:
[tex]\[ \boxed{x^2(x - 12) - 2(x - 12)} \][/tex]
So, the correct option that shows one way to determine the factors of [tex]\( x^3-12x^2-2x+24 \)[/tex] by grouping is:
[tex]\[ x^2(x-12)-2(x-12) \][/tex]
1. Group the terms in pairs:
[tex]\[ x^3 - 12x^2 - 2x + 24 = (x^3 - 12x^2) + (-2x + 24) \][/tex]
2. Factor out the greatest common factor (GCF) from each pair:
For the first pair [tex]\(x^3 - 12x^2\)[/tex]:
[tex]\[ x^3 - 12x^2 = x^2(x - 12) \][/tex]
For the second pair [tex]\(-2x + 24\)[/tex]:
[tex]\[ -2x + 24 = -2(x - 12) \][/tex]
So, the expression now looks like:
[tex]\[ x^3 - 12x^2 - 2x + 24 = x^2(x - 12) - 2(x - 12) \][/tex]
3. Factor out the common binomial factor [tex]\((x - 12)\)[/tex]:
[tex]\[ x^2(x - 12) - 2(x - 12) = (x^2 - 2)(x - 12) \][/tex]
Hence, the factorization of the polynomial [tex]\( x^3 - 12x^2 - 2x + 24 \)[/tex] by grouping is:
[tex]\[ \boxed{x^2(x - 12) - 2(x - 12)} \][/tex]
So, the correct option that shows one way to determine the factors of [tex]\( x^3-12x^2-2x+24 \)[/tex] by grouping is:
[tex]\[ x^2(x-12)-2(x-12) \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.