Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To show that the sum of the interior angles of [tex]$\triangle ABC$[/tex] is [tex]$180^\circ$[/tex], we need to complete the proof with the correct statements and reasons.
Here's the step-by-step completion:
\begin{tabular}{|l|l|}
\hline
Statement & Reason \\
\hline
Points [tex]$A, B,$[/tex] and [tex]$C$[/tex] form a triangle. & given \\
\hline
Let [tex]$\overline{DE}$[/tex] be a line passing through [tex]$B$[/tex] and parallel to [tex]$\overline{AC}$[/tex]. & definition of parallel lines \\
\hline
[tex]$\angle 3 = \angle 5$[/tex] and [tex]$\angle 1 = \angle 4$[/tex]. & alternate interior angles theorem \\
\hline
[tex]$m \angle 1 = m \angle 4$[/tex] and [tex]$m \angle 3 = m \angle 5$[/tex]. & alternate interior angles are equal \\
\hline
[tex]$m \angle 4 + m \angle 2 + m \angle 5 = 180^\circ$[/tex]. & angle addition and definition of a straight line \\
\hline
[tex]$m \angle 1 + m \angle 2 + m \angle 3 = 180^\circ$[/tex]. & substitution \\
\hline
\end{tabular}
This structured approach, both with statements and reasons, proves that the sum of the interior angles of [tex]$\triangle ABC$[/tex] is [tex]$180^\circ$[/tex].
Here's the step-by-step completion:
\begin{tabular}{|l|l|}
\hline
Statement & Reason \\
\hline
Points [tex]$A, B,$[/tex] and [tex]$C$[/tex] form a triangle. & given \\
\hline
Let [tex]$\overline{DE}$[/tex] be a line passing through [tex]$B$[/tex] and parallel to [tex]$\overline{AC}$[/tex]. & definition of parallel lines \\
\hline
[tex]$\angle 3 = \angle 5$[/tex] and [tex]$\angle 1 = \angle 4$[/tex]. & alternate interior angles theorem \\
\hline
[tex]$m \angle 1 = m \angle 4$[/tex] and [tex]$m \angle 3 = m \angle 5$[/tex]. & alternate interior angles are equal \\
\hline
[tex]$m \angle 4 + m \angle 2 + m \angle 5 = 180^\circ$[/tex]. & angle addition and definition of a straight line \\
\hline
[tex]$m \angle 1 + m \angle 2 + m \angle 3 = 180^\circ$[/tex]. & substitution \\
\hline
\end{tabular}
This structured approach, both with statements and reasons, proves that the sum of the interior angles of [tex]$\triangle ABC$[/tex] is [tex]$180^\circ$[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.