Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine whether a polynomial is prime (also known as irreducible), we need to check if it can be factored into non-trivial polynomials with rational coefficients. In simpler terms, a polynomial is prime if it cannot be factored into lower-degree polynomials with rational coefficients.
Let's analyze each polynomial given:
1. [tex]\( p_1(x) = 3x^3 + 3x^2 - 2x - 2 \)[/tex]
2. [tex]\( p_2(x) = 3x^3 - 2x^2 + 3x - 4 \)[/tex]
3. [tex]\( p_3(x) = 4x^3 + 2x^2 + 6x + 3 \)[/tex]
4. [tex]\( p_4(x) = 4x^3 + 4x^2 - 3x - 3 \)[/tex]
### Checking Each Polynomial:
1. For [tex]\( 3x^3 + 3x^2 - 2x - 2 \)[/tex]:
- To check the irreducibility of [tex]\( 3x^3 + 3x^2 - 2x - 2 \)[/tex], we attempt to factor the polynomial. If we find two non-trivial factors (i.e., not simply [tex]\( 1 \)[/tex] and the polynomial itself), then the polynomial is not irreducible. Upon inspection and testing, this polynomial can indeed be factored into lower-degree polynomials with rational coefficients.
2. For [tex]\( 3x^3 - 2x^2 + 3x - 4 \)[/tex]:
- Similarly, we attempt to factor [tex]\( 3x^3 - 2x^2 + 3x - 4 \)[/tex]. Attempting various factorization methods shows that this polynomial can be factored as well.
3. For [tex]\( 4x^3 + 2x^2 + 6x + 3 \)[/tex]:
- We apply the same factorization approach to [tex]\( 4x^3 + 2x^2 + 6x + 3 \)[/tex]. Upon further inspection, this polynomial can also be factored into lower-degree polynomials with rational coefficients.
4. For [tex]\( 4x^3 + 4x^2 - 3x - 3 \)[/tex]:
- Finally, we test [tex]\( 4x^3 + 4x^2 - 3x - 3 \)[/tex] for factorability. Testing various factorization methods confirms that this polynomial can be factored into polynomials with rational coefficients as well.
### Conclusion:
We find that all four polynomials [tex]\( 3x^3 + 3x^2 - 2x - 2 \)[/tex], [tex]\( 3x^3 - 2x^2 + 3x - 4 \)[/tex], [tex]\( 4x^3 + 2x^2 + 6x + 3 \)[/tex], and [tex]\( 4x^3 + 4x^2 - 3x - 3 \)[/tex] can be factored into lower-degree polynomials with rational coefficients.
Therefore, none of the given polynomials is a prime (irreducible) polynomial. The result is:
- [tex]\( 3x^3 + 3x^2 - 2x - 2 \)[/tex]: Not prime (False)
- [tex]\( 3x^3 - 2x^2 + 3x - 4 \)[/tex]: Not prime (False)
- [tex]\( 4x^3 + 2x^2 + 6x + 3 \)[/tex]: Not prime (False)
- [tex]\( 4x^3 + 4x^2 - 3x - 3 \)[/tex]: Not prime (False)
So, the answer is that no polynomial among the given ones is prime.
Let's analyze each polynomial given:
1. [tex]\( p_1(x) = 3x^3 + 3x^2 - 2x - 2 \)[/tex]
2. [tex]\( p_2(x) = 3x^3 - 2x^2 + 3x - 4 \)[/tex]
3. [tex]\( p_3(x) = 4x^3 + 2x^2 + 6x + 3 \)[/tex]
4. [tex]\( p_4(x) = 4x^3 + 4x^2 - 3x - 3 \)[/tex]
### Checking Each Polynomial:
1. For [tex]\( 3x^3 + 3x^2 - 2x - 2 \)[/tex]:
- To check the irreducibility of [tex]\( 3x^3 + 3x^2 - 2x - 2 \)[/tex], we attempt to factor the polynomial. If we find two non-trivial factors (i.e., not simply [tex]\( 1 \)[/tex] and the polynomial itself), then the polynomial is not irreducible. Upon inspection and testing, this polynomial can indeed be factored into lower-degree polynomials with rational coefficients.
2. For [tex]\( 3x^3 - 2x^2 + 3x - 4 \)[/tex]:
- Similarly, we attempt to factor [tex]\( 3x^3 - 2x^2 + 3x - 4 \)[/tex]. Attempting various factorization methods shows that this polynomial can be factored as well.
3. For [tex]\( 4x^3 + 2x^2 + 6x + 3 \)[/tex]:
- We apply the same factorization approach to [tex]\( 4x^3 + 2x^2 + 6x + 3 \)[/tex]. Upon further inspection, this polynomial can also be factored into lower-degree polynomials with rational coefficients.
4. For [tex]\( 4x^3 + 4x^2 - 3x - 3 \)[/tex]:
- Finally, we test [tex]\( 4x^3 + 4x^2 - 3x - 3 \)[/tex] for factorability. Testing various factorization methods confirms that this polynomial can be factored into polynomials with rational coefficients as well.
### Conclusion:
We find that all four polynomials [tex]\( 3x^3 + 3x^2 - 2x - 2 \)[/tex], [tex]\( 3x^3 - 2x^2 + 3x - 4 \)[/tex], [tex]\( 4x^3 + 2x^2 + 6x + 3 \)[/tex], and [tex]\( 4x^3 + 4x^2 - 3x - 3 \)[/tex] can be factored into lower-degree polynomials with rational coefficients.
Therefore, none of the given polynomials is a prime (irreducible) polynomial. The result is:
- [tex]\( 3x^3 + 3x^2 - 2x - 2 \)[/tex]: Not prime (False)
- [tex]\( 3x^3 - 2x^2 + 3x - 4 \)[/tex]: Not prime (False)
- [tex]\( 4x^3 + 2x^2 + 6x + 3 \)[/tex]: Not prime (False)
- [tex]\( 4x^3 + 4x^2 - 3x - 3 \)[/tex]: Not prime (False)
So, the answer is that no polynomial among the given ones is prime.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.