Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine whether a polynomial is prime (also known as irreducible), we need to check if it can be factored into non-trivial polynomials with rational coefficients. In simpler terms, a polynomial is prime if it cannot be factored into lower-degree polynomials with rational coefficients.
Let's analyze each polynomial given:
1. [tex]\( p_1(x) = 3x^3 + 3x^2 - 2x - 2 \)[/tex]
2. [tex]\( p_2(x) = 3x^3 - 2x^2 + 3x - 4 \)[/tex]
3. [tex]\( p_3(x) = 4x^3 + 2x^2 + 6x + 3 \)[/tex]
4. [tex]\( p_4(x) = 4x^3 + 4x^2 - 3x - 3 \)[/tex]
### Checking Each Polynomial:
1. For [tex]\( 3x^3 + 3x^2 - 2x - 2 \)[/tex]:
- To check the irreducibility of [tex]\( 3x^3 + 3x^2 - 2x - 2 \)[/tex], we attempt to factor the polynomial. If we find two non-trivial factors (i.e., not simply [tex]\( 1 \)[/tex] and the polynomial itself), then the polynomial is not irreducible. Upon inspection and testing, this polynomial can indeed be factored into lower-degree polynomials with rational coefficients.
2. For [tex]\( 3x^3 - 2x^2 + 3x - 4 \)[/tex]:
- Similarly, we attempt to factor [tex]\( 3x^3 - 2x^2 + 3x - 4 \)[/tex]. Attempting various factorization methods shows that this polynomial can be factored as well.
3. For [tex]\( 4x^3 + 2x^2 + 6x + 3 \)[/tex]:
- We apply the same factorization approach to [tex]\( 4x^3 + 2x^2 + 6x + 3 \)[/tex]. Upon further inspection, this polynomial can also be factored into lower-degree polynomials with rational coefficients.
4. For [tex]\( 4x^3 + 4x^2 - 3x - 3 \)[/tex]:
- Finally, we test [tex]\( 4x^3 + 4x^2 - 3x - 3 \)[/tex] for factorability. Testing various factorization methods confirms that this polynomial can be factored into polynomials with rational coefficients as well.
### Conclusion:
We find that all four polynomials [tex]\( 3x^3 + 3x^2 - 2x - 2 \)[/tex], [tex]\( 3x^3 - 2x^2 + 3x - 4 \)[/tex], [tex]\( 4x^3 + 2x^2 + 6x + 3 \)[/tex], and [tex]\( 4x^3 + 4x^2 - 3x - 3 \)[/tex] can be factored into lower-degree polynomials with rational coefficients.
Therefore, none of the given polynomials is a prime (irreducible) polynomial. The result is:
- [tex]\( 3x^3 + 3x^2 - 2x - 2 \)[/tex]: Not prime (False)
- [tex]\( 3x^3 - 2x^2 + 3x - 4 \)[/tex]: Not prime (False)
- [tex]\( 4x^3 + 2x^2 + 6x + 3 \)[/tex]: Not prime (False)
- [tex]\( 4x^3 + 4x^2 - 3x - 3 \)[/tex]: Not prime (False)
So, the answer is that no polynomial among the given ones is prime.
Let's analyze each polynomial given:
1. [tex]\( p_1(x) = 3x^3 + 3x^2 - 2x - 2 \)[/tex]
2. [tex]\( p_2(x) = 3x^3 - 2x^2 + 3x - 4 \)[/tex]
3. [tex]\( p_3(x) = 4x^3 + 2x^2 + 6x + 3 \)[/tex]
4. [tex]\( p_4(x) = 4x^3 + 4x^2 - 3x - 3 \)[/tex]
### Checking Each Polynomial:
1. For [tex]\( 3x^3 + 3x^2 - 2x - 2 \)[/tex]:
- To check the irreducibility of [tex]\( 3x^3 + 3x^2 - 2x - 2 \)[/tex], we attempt to factor the polynomial. If we find two non-trivial factors (i.e., not simply [tex]\( 1 \)[/tex] and the polynomial itself), then the polynomial is not irreducible. Upon inspection and testing, this polynomial can indeed be factored into lower-degree polynomials with rational coefficients.
2. For [tex]\( 3x^3 - 2x^2 + 3x - 4 \)[/tex]:
- Similarly, we attempt to factor [tex]\( 3x^3 - 2x^2 + 3x - 4 \)[/tex]. Attempting various factorization methods shows that this polynomial can be factored as well.
3. For [tex]\( 4x^3 + 2x^2 + 6x + 3 \)[/tex]:
- We apply the same factorization approach to [tex]\( 4x^3 + 2x^2 + 6x + 3 \)[/tex]. Upon further inspection, this polynomial can also be factored into lower-degree polynomials with rational coefficients.
4. For [tex]\( 4x^3 + 4x^2 - 3x - 3 \)[/tex]:
- Finally, we test [tex]\( 4x^3 + 4x^2 - 3x - 3 \)[/tex] for factorability. Testing various factorization methods confirms that this polynomial can be factored into polynomials with rational coefficients as well.
### Conclusion:
We find that all four polynomials [tex]\( 3x^3 + 3x^2 - 2x - 2 \)[/tex], [tex]\( 3x^3 - 2x^2 + 3x - 4 \)[/tex], [tex]\( 4x^3 + 2x^2 + 6x + 3 \)[/tex], and [tex]\( 4x^3 + 4x^2 - 3x - 3 \)[/tex] can be factored into lower-degree polynomials with rational coefficients.
Therefore, none of the given polynomials is a prime (irreducible) polynomial. The result is:
- [tex]\( 3x^3 + 3x^2 - 2x - 2 \)[/tex]: Not prime (False)
- [tex]\( 3x^3 - 2x^2 + 3x - 4 \)[/tex]: Not prime (False)
- [tex]\( 4x^3 + 2x^2 + 6x + 3 \)[/tex]: Not prime (False)
- [tex]\( 4x^3 + 4x^2 - 3x - 3 \)[/tex]: Not prime (False)
So, the answer is that no polynomial among the given ones is prime.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.