Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's analyze each statement and verify its correctness based on the given probability results:
1. The probability of getting a sum that is even is [tex]\(\frac{1}{2}\)[/tex]:
- According to the given probability results, the probability of getting an even sum is 0.5.
- Converting 0.5 to a fraction, we get [tex]\(\frac{1}{2}\)[/tex].
- Therefore, this statement is true.
2. The probability of getting a sum that is a multiple of 3 is [tex]\(\frac{3}{8}\)[/tex]:
- The given probability of getting a sum that is a multiple of 3 is 0.375.
- Converting 0.375 to a fraction, we get [tex]\(\frac{3}{8}\)[/tex].
- Therefore, this statement is true.
3. The probability of getting a sum that is less than 10 is [tex]\(\frac{21}{40}\)[/tex]:
- The given probability of getting a sum that is less than 10 is 0.4375.
- Converting 0.4375 to a fraction, we get [tex]\(\frac{21}{40}\)[/tex].
- Therefore, this statement is true.
4. A sum equal to 8 is the result 20 times in 80 rounds. This suggests the game is unfair:
- The given number of expected occurrences of a sum equal to 8 in 80 rounds is 7.5.
- Since 7.5 is far from 20, the statement that a sum equal to 8 occurs 20 times in 80 rounds suggests an anomaly.
- Therefore, this statement is true in highlighting a discrepancy.
5. The probability of getting a sum that is greater than or equal to 12 is [tex]\(\frac{11}{86}\)[/tex]:
- The given probability of getting a sum greater than or equal to 12 is 0.34375.
- Converting 0.34375 to a fraction, we get [tex]\(\frac{11}{32}\)[/tex], not [tex]\(\frac{11}{86}\)[/tex].
- Therefore, this statement is false.
So, the true statements are:
- The probability of getting a sum that is even is [tex]\(\frac{1}{2}\)[/tex].
- The probability of getting a sum that is a multiple of 3 is [tex]\(\frac{3}{8}\)[/tex].
- The probability of getting a sum that is less than 10 is [tex]\(\frac{21}{40}\)[/tex].
- A sum equal to 8 is the result 20 times in 80 rounds. This suggests the game is unfair.
1. The probability of getting a sum that is even is [tex]\(\frac{1}{2}\)[/tex]:
- According to the given probability results, the probability of getting an even sum is 0.5.
- Converting 0.5 to a fraction, we get [tex]\(\frac{1}{2}\)[/tex].
- Therefore, this statement is true.
2. The probability of getting a sum that is a multiple of 3 is [tex]\(\frac{3}{8}\)[/tex]:
- The given probability of getting a sum that is a multiple of 3 is 0.375.
- Converting 0.375 to a fraction, we get [tex]\(\frac{3}{8}\)[/tex].
- Therefore, this statement is true.
3. The probability of getting a sum that is less than 10 is [tex]\(\frac{21}{40}\)[/tex]:
- The given probability of getting a sum that is less than 10 is 0.4375.
- Converting 0.4375 to a fraction, we get [tex]\(\frac{21}{40}\)[/tex].
- Therefore, this statement is true.
4. A sum equal to 8 is the result 20 times in 80 rounds. This suggests the game is unfair:
- The given number of expected occurrences of a sum equal to 8 in 80 rounds is 7.5.
- Since 7.5 is far from 20, the statement that a sum equal to 8 occurs 20 times in 80 rounds suggests an anomaly.
- Therefore, this statement is true in highlighting a discrepancy.
5. The probability of getting a sum that is greater than or equal to 12 is [tex]\(\frac{11}{86}\)[/tex]:
- The given probability of getting a sum greater than or equal to 12 is 0.34375.
- Converting 0.34375 to a fraction, we get [tex]\(\frac{11}{32}\)[/tex], not [tex]\(\frac{11}{86}\)[/tex].
- Therefore, this statement is false.
So, the true statements are:
- The probability of getting a sum that is even is [tex]\(\frac{1}{2}\)[/tex].
- The probability of getting a sum that is a multiple of 3 is [tex]\(\frac{3}{8}\)[/tex].
- The probability of getting a sum that is less than 10 is [tex]\(\frac{21}{40}\)[/tex].
- A sum equal to 8 is the result 20 times in 80 rounds. This suggests the game is unfair.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.