Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the end behavior of the exponential function [tex]\( f(x) = 2^{x-3} \)[/tex], let's analyze and understand how exponential functions generally behave and specifically how this function behaves.
1. General Behavior of Exponential Functions:
Exponential functions of the form [tex]\( g(x) = a^x \)[/tex], where [tex]\( a > 1 \)[/tex], usually grow rapidly as [tex]\( x \)[/tex] increases. Conversely, as [tex]\( x \)[/tex] decreases, [tex]\( g(x) \)[/tex] approaches 0. This behavior is characteristic of all exponential functions with base [tex]\( a > 1 \)[/tex].
2. Understanding [tex]\( f(x) = 2^{x-3} \)[/tex]:
The function [tex]\( f(x) = 2^{x-3} \)[/tex] can be re-written for clarity in understanding its components:
[tex]\[ f(x) = 2^{x-3} = \left( 2^x \right) \cdot \left( 2^{-3} \right) \][/tex]
Notice that [tex]\( 2^{-3} \)[/tex] is a constant ([tex]\( 2^{-3} = \frac{1}{8} \)[/tex]). This means the function can be expressed as:
[tex]\[ f(x) = \frac{1}{8} \left( 2^x \right) \][/tex]
3. Behavior for Very High [tex]\( x \)[/tex]-Values:
- As [tex]\( x \)[/tex] becomes very large (high [tex]\( x \)[/tex]-values), the term [tex]\( 2^x \)[/tex] grows very quickly towards positive infinity since the base of the exponential, 2, is greater than 1.
- Therefore, the product [tex]\( \frac{1}{8} \cdot 2^x \)[/tex] also moves toward positive infinity because a large positive number multiplied by a positive constant remains a large positive number.
4. Conclusion:
- Given these observations, as [tex]\( x \)[/tex] becomes very large, the function [tex]\( f(x) = 2^{x-3} \)[/tex] moves towards positive infinity.
- This matches the description provided in option A.
Therefore, the correct statement that describes the end behavior of the exponential function [tex]\( f(x) = 2^{x-3} \)[/tex] is:
A. For very high [tex]\( x \)[/tex]-values, [tex]\( f(x) \)[/tex] moves toward positive infinity.
Thus, the selected answer is:
[tex]\[ \boxed{1} \quad \text{(A)} \][/tex]
1. General Behavior of Exponential Functions:
Exponential functions of the form [tex]\( g(x) = a^x \)[/tex], where [tex]\( a > 1 \)[/tex], usually grow rapidly as [tex]\( x \)[/tex] increases. Conversely, as [tex]\( x \)[/tex] decreases, [tex]\( g(x) \)[/tex] approaches 0. This behavior is characteristic of all exponential functions with base [tex]\( a > 1 \)[/tex].
2. Understanding [tex]\( f(x) = 2^{x-3} \)[/tex]:
The function [tex]\( f(x) = 2^{x-3} \)[/tex] can be re-written for clarity in understanding its components:
[tex]\[ f(x) = 2^{x-3} = \left( 2^x \right) \cdot \left( 2^{-3} \right) \][/tex]
Notice that [tex]\( 2^{-3} \)[/tex] is a constant ([tex]\( 2^{-3} = \frac{1}{8} \)[/tex]). This means the function can be expressed as:
[tex]\[ f(x) = \frac{1}{8} \left( 2^x \right) \][/tex]
3. Behavior for Very High [tex]\( x \)[/tex]-Values:
- As [tex]\( x \)[/tex] becomes very large (high [tex]\( x \)[/tex]-values), the term [tex]\( 2^x \)[/tex] grows very quickly towards positive infinity since the base of the exponential, 2, is greater than 1.
- Therefore, the product [tex]\( \frac{1}{8} \cdot 2^x \)[/tex] also moves toward positive infinity because a large positive number multiplied by a positive constant remains a large positive number.
4. Conclusion:
- Given these observations, as [tex]\( x \)[/tex] becomes very large, the function [tex]\( f(x) = 2^{x-3} \)[/tex] moves towards positive infinity.
- This matches the description provided in option A.
Therefore, the correct statement that describes the end behavior of the exponential function [tex]\( f(x) = 2^{x-3} \)[/tex] is:
A. For very high [tex]\( x \)[/tex]-values, [tex]\( f(x) \)[/tex] moves toward positive infinity.
Thus, the selected answer is:
[tex]\[ \boxed{1} \quad \text{(A)} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.