Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Ask your questions and receive precise answers from experienced professionals across different disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine how much the investment will be worth in 10 years if \[tex]$535 is invested at an interest rate of 6% per year, and is compounded continuously, we will use the continuous compound interest formula:
\[ A = Pe^{rt} \]
where:
- \( P \) is the principal amount (initial investment)
- \( r \) is the annual interest rate (as a decimal)
- \( t \) is the time the money is invested for, in years
- \( e \) is the base of the natural logarithm, approximately equal to 2.71828
Given:
- \( P = 535 \)
- \( r = 0.06 \) (6% as a decimal)
- \( t = 10 \) years
We can now substitute these values into the formula:
\[ A = 535 \times e^{0.06 \times 10} \]
\[ A = 535 \times e^{0.6} \]
When we calculate \( e^{0.6} \), we find that it is approximately equal to 1.82212.
\[ A = 535 \times 1.82212 \]
Multiplying these values:
\[ A \approx 535 \times 1.82212 = 974.83 \]
Therefore, the investment will be worth approximately \(\$[/tex] 974.83\) after 10 years.
Thus, the correct answer is:
[tex]\(\boxed{\$ 974.83}\)[/tex]
Thus, the correct answer is:
[tex]\(\boxed{\$ 974.83}\)[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.