Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's go through the detailed steps to complete the unit conversion setup using dimensional analysis for determining the moles of NaCl.
### Initial Information:
- Molecular weight of NaCl: [tex]\( 58.5 \, \text{g/mol} \)[/tex]
- Weight of the salt: [tex]\( 6.37 \, \text{g} \)[/tex]
We need to determine how many moles of NaCl are in 6.37 grams of salt.
### Calculation using Dimensional Analysis:
To find the number of moles, we will use the formula:
[tex]\[ \text{Moles of NaCl} = \frac{\text{Weight of salt}}{\text{Molecular weight of NaCl}} \][/tex]
### Filling in the Dimensional Analysis Setup:
1. A – The given weight of salt in grams.
2. B – The unit of weight we're given, which is grams.
3. C – The molecular weight of NaCl in grams per mole.
So, substituting the values here:
[tex]\[ A = 6.37 \, \text{g} \][/tex]
[tex]\[ B = 1 \, \text{g} \][/tex]
[tex]\[ C = 58.5 \, \text{g/mol} \][/tex]
### Verification of the Unit Conversion Setup:
To use dimensional analysis correctly:
[tex]\[ \text{Moles NaCl} = A \times \frac{B}{C} \][/tex]
Substituting these values:
[tex]\[ \text{Moles NaCl} = 6.37 \, \text{g} \times \frac{1 \, \text{g}}{58.5 \, \text{g/mol}} \][/tex]
This indeed simplifies to calculating the moles of NaCl:
[tex]\[ \text{Moles NaCl} = \frac{6.37}{58.5} = 0.1088888888888889 \][/tex]
### Conclusion:
Therefore,
[tex]\[ A = 6.37 \, \text{g} \][/tex]
[tex]\[ B = 1 \, \text{g} \][/tex]
[tex]\[ C = 58.5 \, \text{g/mol} \][/tex]
And the number of moles of NaCl is approximately 0.1089 moles.
So, completing the setup:
[tex]\[ A \times \frac{B}{C} = \text{Moles of NaCl} \][/tex]
where:
[tex]\[ A = 6.37 \][/tex]
[tex]\[ B = 1 \, \text{g} \][/tex]
[tex]\[ C = 58.5 \, \text{g/mol} \][/tex]
### Initial Information:
- Molecular weight of NaCl: [tex]\( 58.5 \, \text{g/mol} \)[/tex]
- Weight of the salt: [tex]\( 6.37 \, \text{g} \)[/tex]
We need to determine how many moles of NaCl are in 6.37 grams of salt.
### Calculation using Dimensional Analysis:
To find the number of moles, we will use the formula:
[tex]\[ \text{Moles of NaCl} = \frac{\text{Weight of salt}}{\text{Molecular weight of NaCl}} \][/tex]
### Filling in the Dimensional Analysis Setup:
1. A – The given weight of salt in grams.
2. B – The unit of weight we're given, which is grams.
3. C – The molecular weight of NaCl in grams per mole.
So, substituting the values here:
[tex]\[ A = 6.37 \, \text{g} \][/tex]
[tex]\[ B = 1 \, \text{g} \][/tex]
[tex]\[ C = 58.5 \, \text{g/mol} \][/tex]
### Verification of the Unit Conversion Setup:
To use dimensional analysis correctly:
[tex]\[ \text{Moles NaCl} = A \times \frac{B}{C} \][/tex]
Substituting these values:
[tex]\[ \text{Moles NaCl} = 6.37 \, \text{g} \times \frac{1 \, \text{g}}{58.5 \, \text{g/mol}} \][/tex]
This indeed simplifies to calculating the moles of NaCl:
[tex]\[ \text{Moles NaCl} = \frac{6.37}{58.5} = 0.1088888888888889 \][/tex]
### Conclusion:
Therefore,
[tex]\[ A = 6.37 \, \text{g} \][/tex]
[tex]\[ B = 1 \, \text{g} \][/tex]
[tex]\[ C = 58.5 \, \text{g/mol} \][/tex]
And the number of moles of NaCl is approximately 0.1089 moles.
So, completing the setup:
[tex]\[ A \times \frac{B}{C} = \text{Moles of NaCl} \][/tex]
where:
[tex]\[ A = 6.37 \][/tex]
[tex]\[ B = 1 \, \text{g} \][/tex]
[tex]\[ C = 58.5 \, \text{g/mol} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.