Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Absolutely! Let's break down the given expression step-by-step to find the equivalent expression.
The original expression is:
[tex]$\frac{\left(x^6 y^8\right)^3}{x^2 y^2}$[/tex]
Step 1: Simplify the numerator
First, we need to simplify [tex]\(\left(x^6 y^8\right)^3\)[/tex]. When a term with a power is raised to another power, you multiply the exponents. Therefore:
[tex]$\left(x^6 y^8\right)^3 = x^{6 \cdot 3} y^{8 \cdot 3} = x^{18} y^{24}$[/tex]
Step 2: Write the entire expression with the simplified numerator
After simplifying the numerator, we get:
[tex]$\frac{x^{18} y^{24}}{x^2 y^2}$[/tex]
Step 3: Simplify the fraction
To simplify [tex]\(\frac{x^{18}}{x^2}\)[/tex], we subtract the exponent in the denominator from the exponent in the numerator:
[tex]$\frac{x^{18}}{x^2} = x^{18 - 2} = x^{16}$[/tex]
Similarly, to simplify [tex]\(\frac{y^{24}}{y^2}\)[/tex], we subtract the exponent in the denominator from the exponent in the numerator:
[tex]$\frac{y^{24}}{y^2} = y^{24 - 2} = y^{22}$[/tex]
Step 4: Combine the simplified terms
Combining the simplified terms, we get:
[tex]$x^{16} y^{22}$[/tex]
Thus, the expression equivalent to [tex]\(\frac{\left(x^6 y^8\right)^3}{x^2 y^2}\)[/tex] is:
[tex]$x^{16} y^{22}$[/tex]
This corresponds to the provided answer choice:
[tex]$\boxed{x^{16} y^{22}}$[/tex]
The original expression is:
[tex]$\frac{\left(x^6 y^8\right)^3}{x^2 y^2}$[/tex]
Step 1: Simplify the numerator
First, we need to simplify [tex]\(\left(x^6 y^8\right)^3\)[/tex]. When a term with a power is raised to another power, you multiply the exponents. Therefore:
[tex]$\left(x^6 y^8\right)^3 = x^{6 \cdot 3} y^{8 \cdot 3} = x^{18} y^{24}$[/tex]
Step 2: Write the entire expression with the simplified numerator
After simplifying the numerator, we get:
[tex]$\frac{x^{18} y^{24}}{x^2 y^2}$[/tex]
Step 3: Simplify the fraction
To simplify [tex]\(\frac{x^{18}}{x^2}\)[/tex], we subtract the exponent in the denominator from the exponent in the numerator:
[tex]$\frac{x^{18}}{x^2} = x^{18 - 2} = x^{16}$[/tex]
Similarly, to simplify [tex]\(\frac{y^{24}}{y^2}\)[/tex], we subtract the exponent in the denominator from the exponent in the numerator:
[tex]$\frac{y^{24}}{y^2} = y^{24 - 2} = y^{22}$[/tex]
Step 4: Combine the simplified terms
Combining the simplified terms, we get:
[tex]$x^{16} y^{22}$[/tex]
Thus, the expression equivalent to [tex]\(\frac{\left(x^6 y^8\right)^3}{x^2 y^2}\)[/tex] is:
[tex]$x^{16} y^{22}$[/tex]
This corresponds to the provided answer choice:
[tex]$\boxed{x^{16} y^{22}}$[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.