Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the dimensions that produce the maximum floor area for a one-story house that is rectangular in shape with a perimeter of 153 feet, follow these steps:
1. Understanding the perimeter relation:
The perimeter [tex]\( P \)[/tex] of a rectangle is given by the formula:
[tex]\[ P = 2 \times (\text{length} + \text{width}) \][/tex]
Given the perimeter is 153 feet:
[tex]\[ 2 \times (\text{length} + \text{width}) = 153 \][/tex]
2. Solving for the sum of length and width:
Divide both sides by 2 to isolate the sum of length and width:
[tex]\[ \text{length} + \text{width} = \frac{153}{2} = 76.5 \][/tex]
3. Considering the quadratic function for area:
To maximize the area ([tex]\( A \)[/tex]), which is given by [tex]\( A = \text{length} \times \text{width} \)[/tex], observe that length + width = 76.5 means:
[tex]\[ \text{Area} = \text{width} \times (76.5 - \text{width}) \][/tex]
4. Finding the dimensions that maximize area:
The function [tex]\( \text{width} \times (76.5 - \text{width}) \)[/tex] is a quadratic function, which reaches its maximum value when the width is half of 76.5 (the value at which a parabola opens downwards has its vertex). Therefore:
[tex]\[ \text{width} = \frac{76.5}{2} = 38.25 \ \text{feet} \][/tex]
Given that width and length are equal in this scenario:
[tex]\[ \text{length} = 76.5 - 38.25 = 38.25 \ \text{feet} \][/tex]
5. Calculating the maximum area:
[tex]\[ \text{Area} = 38.25 \times 38.25 = 1463.0625 \ \text{square feet} \][/tex]
The dimensions that yield the maximum floor area are 38.25 feet by 38.25 feet, as the maximum area is achieved when the rectangle is a square.
Therefore, the correct answer is:
OD. 38.25 ft x 38.25 ft
1. Understanding the perimeter relation:
The perimeter [tex]\( P \)[/tex] of a rectangle is given by the formula:
[tex]\[ P = 2 \times (\text{length} + \text{width}) \][/tex]
Given the perimeter is 153 feet:
[tex]\[ 2 \times (\text{length} + \text{width}) = 153 \][/tex]
2. Solving for the sum of length and width:
Divide both sides by 2 to isolate the sum of length and width:
[tex]\[ \text{length} + \text{width} = \frac{153}{2} = 76.5 \][/tex]
3. Considering the quadratic function for area:
To maximize the area ([tex]\( A \)[/tex]), which is given by [tex]\( A = \text{length} \times \text{width} \)[/tex], observe that length + width = 76.5 means:
[tex]\[ \text{Area} = \text{width} \times (76.5 - \text{width}) \][/tex]
4. Finding the dimensions that maximize area:
The function [tex]\( \text{width} \times (76.5 - \text{width}) \)[/tex] is a quadratic function, which reaches its maximum value when the width is half of 76.5 (the value at which a parabola opens downwards has its vertex). Therefore:
[tex]\[ \text{width} = \frac{76.5}{2} = 38.25 \ \text{feet} \][/tex]
Given that width and length are equal in this scenario:
[tex]\[ \text{length} = 76.5 - 38.25 = 38.25 \ \text{feet} \][/tex]
5. Calculating the maximum area:
[tex]\[ \text{Area} = 38.25 \times 38.25 = 1463.0625 \ \text{square feet} \][/tex]
The dimensions that yield the maximum floor area are 38.25 feet by 38.25 feet, as the maximum area is achieved when the rectangle is a square.
Therefore, the correct answer is:
OD. 38.25 ft x 38.25 ft
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.