At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine after how many seconds the projectile will reach a height of 200 feet, we need to use the equation of motion:
[tex]\[ h(t) = at^2 + vt + h_0 \][/tex]
where:
- [tex]\( h(t) \)[/tex] is the height of the projectile at time [tex]\( t \)[/tex],
- [tex]\( a \)[/tex] is the acceleration due to gravity, which is [tex]\(-16 \, ft/s^2 \)[/tex] (negative because gravity acts downward),
- [tex]\( v \)[/tex] is the initial velocity, [tex]\(120 \, ft/s \)[/tex],
- [tex]\( h_0 \)[/tex] is the initial height, [tex]\(0 \, ft \)[/tex] (since it is launched from the ground).
We need to find the times [tex]\( t \)[/tex] when the height [tex]\( h(t) \)[/tex] is 200 feet. Plugging all known values into the equation, we get:
[tex]\[ 200 = -16t^2 + 120t + 0 \][/tex]
This simplifies to:
[tex]\[ -16t^2 + 120t - 200 = 0 \][/tex]
This is a quadratic equation in the form [tex]\( at^2 + bt + c = 0 \)[/tex], where:
- [tex]\( a = -16 \)[/tex],
- [tex]\( b = 120 \)[/tex],
- [tex]\( c = -200 \)[/tex].
To solve for [tex]\( t \)[/tex], we use the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substitute [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the quadratic formula:
[tex]\[ t = \frac{-120 \pm \sqrt{(120)^2 - 4(-16)(-200)}}{2(-16)} \][/tex]
[tex]\[ t = \frac{-120 \pm \sqrt{14400 - 12800}}{-32} \][/tex]
[tex]\[ t = \frac{-120 \pm \sqrt{1600}}{-32} \][/tex]
[tex]\[ t = \frac{-120 \pm 40}{-32} \][/tex]
This gives us two solutions for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{-120 + 40}{-32} = \frac{-80}{-32} = 2.5 \, s \][/tex]
[tex]\[ t = \frac{-120 - 40}{-32} = \frac{-160}{-32} = 5.0 \, s \][/tex]
Therefore, the projectile will reach a height of 200 feet at approximately [tex]\( 2.5 \, s \)[/tex] and [tex]\( 5.0 \, s \)[/tex]. Among the given options, [tex]\( 2.5 \, s \)[/tex] is a correct answer.
Hence, the correct answer is:
[tex]\[ \boxed{2.5 \, s} \][/tex]
[tex]\[ h(t) = at^2 + vt + h_0 \][/tex]
where:
- [tex]\( h(t) \)[/tex] is the height of the projectile at time [tex]\( t \)[/tex],
- [tex]\( a \)[/tex] is the acceleration due to gravity, which is [tex]\(-16 \, ft/s^2 \)[/tex] (negative because gravity acts downward),
- [tex]\( v \)[/tex] is the initial velocity, [tex]\(120 \, ft/s \)[/tex],
- [tex]\( h_0 \)[/tex] is the initial height, [tex]\(0 \, ft \)[/tex] (since it is launched from the ground).
We need to find the times [tex]\( t \)[/tex] when the height [tex]\( h(t) \)[/tex] is 200 feet. Plugging all known values into the equation, we get:
[tex]\[ 200 = -16t^2 + 120t + 0 \][/tex]
This simplifies to:
[tex]\[ -16t^2 + 120t - 200 = 0 \][/tex]
This is a quadratic equation in the form [tex]\( at^2 + bt + c = 0 \)[/tex], where:
- [tex]\( a = -16 \)[/tex],
- [tex]\( b = 120 \)[/tex],
- [tex]\( c = -200 \)[/tex].
To solve for [tex]\( t \)[/tex], we use the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substitute [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the quadratic formula:
[tex]\[ t = \frac{-120 \pm \sqrt{(120)^2 - 4(-16)(-200)}}{2(-16)} \][/tex]
[tex]\[ t = \frac{-120 \pm \sqrt{14400 - 12800}}{-32} \][/tex]
[tex]\[ t = \frac{-120 \pm \sqrt{1600}}{-32} \][/tex]
[tex]\[ t = \frac{-120 \pm 40}{-32} \][/tex]
This gives us two solutions for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{-120 + 40}{-32} = \frac{-80}{-32} = 2.5 \, s \][/tex]
[tex]\[ t = \frac{-120 - 40}{-32} = \frac{-160}{-32} = 5.0 \, s \][/tex]
Therefore, the projectile will reach a height of 200 feet at approximately [tex]\( 2.5 \, s \)[/tex] and [tex]\( 5.0 \, s \)[/tex]. Among the given options, [tex]\( 2.5 \, s \)[/tex] is a correct answer.
Hence, the correct answer is:
[tex]\[ \boxed{2.5 \, s} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.