Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's start with the given equation of the circle:
[tex]\[ (x - 2)^2 + (y - 3)^2 = 25 \][/tex]
From this equation, we can identify the center of the circle, [tex]\((h, k)\)[/tex], and the radius [tex]\(r\)[/tex]. The standard form of a circle's equation is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
By comparing, we can see that the center of the circle [tex]\((h, k)\)[/tex] is [tex]\((2, 3)\)[/tex], and the radius [tex]\(r\)[/tex] is [tex]\(\sqrt{25} = 5\)[/tex].
Next, we need to find the result of shifting the circle to the left by 2 units. When we shift a circle horizontally, we only change the [tex]\(x\)[/tex]-coordinate of the center. Specifically:
1. To shift left 2 units: we subtract 2 from the [tex]\(x\)[/tex]-coordinate.
Therefore, the new center of the circle will be:
- New [tex]\(x\)[/tex]-coordinate: [tex]\(2 - 2 = 0\)[/tex]
- [tex]\(y\)[/tex]-coordinate remains unchanged at [tex]\(3\)[/tex].
So, the new center of the circle is [tex]\((0, 3)\)[/tex].
Now, let's determine which of the given options correctly describes this translation:
- A. Both the [tex]\(x\)[/tex]- and [tex]\(y\)[/tex]-coordinates of the center of the circle increase by 2. (Incorrect, since only the [tex]\(x\)[/tex]-coordinate changed, and it decreased, not increased.)
- B. Both the [tex]\(x\)[/tex]- and [tex]\(y\)[/tex]-coordinates of the center of the circle decrease by 2. (Incorrect, since the [tex]\(y\)[/tex]-coordinate did not change.)
- C. The [tex]\(x\)[/tex]-coordinate of the center of the circle decreases by 2. (Correct, the [tex]\(x\)[/tex]-coordinate changed from 2 to 0, a decrease by 2 units.)
- D. The [tex]\(y\)[/tex]-coordinate of the center of the circle decreases by 2. (Incorrect, since the [tex]\(y\)[/tex]-coordinate remained at 3.)
Thus, the correct answer is:
[tex]\[ \boxed{C} \][/tex]
[tex]\[ (x - 2)^2 + (y - 3)^2 = 25 \][/tex]
From this equation, we can identify the center of the circle, [tex]\((h, k)\)[/tex], and the radius [tex]\(r\)[/tex]. The standard form of a circle's equation is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
By comparing, we can see that the center of the circle [tex]\((h, k)\)[/tex] is [tex]\((2, 3)\)[/tex], and the radius [tex]\(r\)[/tex] is [tex]\(\sqrt{25} = 5\)[/tex].
Next, we need to find the result of shifting the circle to the left by 2 units. When we shift a circle horizontally, we only change the [tex]\(x\)[/tex]-coordinate of the center. Specifically:
1. To shift left 2 units: we subtract 2 from the [tex]\(x\)[/tex]-coordinate.
Therefore, the new center of the circle will be:
- New [tex]\(x\)[/tex]-coordinate: [tex]\(2 - 2 = 0\)[/tex]
- [tex]\(y\)[/tex]-coordinate remains unchanged at [tex]\(3\)[/tex].
So, the new center of the circle is [tex]\((0, 3)\)[/tex].
Now, let's determine which of the given options correctly describes this translation:
- A. Both the [tex]\(x\)[/tex]- and [tex]\(y\)[/tex]-coordinates of the center of the circle increase by 2. (Incorrect, since only the [tex]\(x\)[/tex]-coordinate changed, and it decreased, not increased.)
- B. Both the [tex]\(x\)[/tex]- and [tex]\(y\)[/tex]-coordinates of the center of the circle decrease by 2. (Incorrect, since the [tex]\(y\)[/tex]-coordinate did not change.)
- C. The [tex]\(x\)[/tex]-coordinate of the center of the circle decreases by 2. (Correct, the [tex]\(x\)[/tex]-coordinate changed from 2 to 0, a decrease by 2 units.)
- D. The [tex]\(y\)[/tex]-coordinate of the center of the circle decreases by 2. (Incorrect, since the [tex]\(y\)[/tex]-coordinate remained at 3.)
Thus, the correct answer is:
[tex]\[ \boxed{C} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.