Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which expression correctly represents the determinant of the matrix [tex]\( A = \left[\begin{array}{ll}2 & 3 \\ 1 & 9\end{array}\right] \)[/tex], we will follow the formula for calculating the determinant of a 2x2 matrix.
For a general 2x2 matrix:
[tex]\[ A = \left[\begin{array}{ll}a & b \\ c & d\end{array}\right], \][/tex]
the determinant of [tex]\( A \)[/tex] is given by:
[tex]\[ \det(A) = ad - bc. \][/tex]
Applying this formula to our specific matrix:
[tex]\[ A = \left[\begin{array}{ll}2 & 3 \\ 1 & 9\end{array}\right], \][/tex]
we identify [tex]\( a = 2 \)[/tex], [tex]\( b = 3 \)[/tex], [tex]\( c = 1 \)[/tex], and [tex]\( d = 9 \)[/tex].
Plugging these values into the determinant formula, we get:
[tex]\[ \det(A) = (2)(9) - (1)(3). \][/tex]
Therefore, the correct expression for the determinant of [tex]\( A \)[/tex] is:
[tex]\[ \det(A) = (2)(9) - (1)(3). \][/tex]
Among the given options:
1. [tex]\(\operatorname{det}(A) = (2)(9) - (1)(3)\)[/tex]
2. [tex]\(\operatorname{det}(A) = (2)(9) + (1)(3)\)[/tex]
3. [tex]\(\operatorname{det}(A) = (2)(3) - (1)(9)\)[/tex]
4. [tex]\(\operatorname{det}(A) = (2)(3) + (1)(9)\)[/tex]
The first option, [tex]\(\operatorname{det}(A) = (2)(9) - (1)(3)\)[/tex], is the correct one.
For a general 2x2 matrix:
[tex]\[ A = \left[\begin{array}{ll}a & b \\ c & d\end{array}\right], \][/tex]
the determinant of [tex]\( A \)[/tex] is given by:
[tex]\[ \det(A) = ad - bc. \][/tex]
Applying this formula to our specific matrix:
[tex]\[ A = \left[\begin{array}{ll}2 & 3 \\ 1 & 9\end{array}\right], \][/tex]
we identify [tex]\( a = 2 \)[/tex], [tex]\( b = 3 \)[/tex], [tex]\( c = 1 \)[/tex], and [tex]\( d = 9 \)[/tex].
Plugging these values into the determinant formula, we get:
[tex]\[ \det(A) = (2)(9) - (1)(3). \][/tex]
Therefore, the correct expression for the determinant of [tex]\( A \)[/tex] is:
[tex]\[ \det(A) = (2)(9) - (1)(3). \][/tex]
Among the given options:
1. [tex]\(\operatorname{det}(A) = (2)(9) - (1)(3)\)[/tex]
2. [tex]\(\operatorname{det}(A) = (2)(9) + (1)(3)\)[/tex]
3. [tex]\(\operatorname{det}(A) = (2)(3) - (1)(9)\)[/tex]
4. [tex]\(\operatorname{det}(A) = (2)(3) + (1)(9)\)[/tex]
The first option, [tex]\(\operatorname{det}(A) = (2)(9) - (1)(3)\)[/tex], is the correct one.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.