Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the distance between the source charge and the test charge, we can use Coulomb's Law as it pertains to electric fields. The relationship is given by:
[tex]\[ E = k \frac{Q}{r^2} \][/tex]
where:
- [tex]\(E\)[/tex] is the electric field,
- [tex]\(k\)[/tex] is Coulomb's constant ( [tex]\(8.99 \times 10^9 \, \frac{N \cdot m^2}{C^2} \)[/tex] ),
- [tex]\(Q\)[/tex] is the source charge ( [tex]\(3 \, \mu C = 3 \times 10^{-6} \, C\)[/tex] ), and
- [tex]\(r\)[/tex] is the distance we need to find.
We need to solve for [tex]\(r\)[/tex], the distance. Rearranging the equation to solve for [tex]\(r^2\)[/tex], we get:
[tex]\[ r^2 = k \frac{Q}{E} \][/tex]
Taking the square root of both sides, we get:
[tex]\[ r = \sqrt{ \frac{kQ}{E} } \][/tex]
Substituting in the given values:
[tex]\[ r = \sqrt{ \frac{8.99 \times 10^9 \, \frac{N \cdot m^2}{C^2} \times 3 \times 10^{-6} \, C}{2.86 \times 10^5 \, \frac{N}{C}} } \][/tex]
Calculate the value inside the square root:
[tex]\[ r = \sqrt{ \frac{8.99 \times 10^9 \times 3 \times 10^{-6}}{2.86 \times 10^5} } \][/tex]
Divide the products in the numerator and the denominator:
[tex]\[ r = \sqrt{ \frac{26.97 \times 10^3}{2.86 \times 10^5} } \][/tex]
Simplify the exponent part:
[tex]\[ r = \sqrt{ \frac{26.97}{2.86 \times 10^2} } \][/tex]
[tex]\[ r = \sqrt{ \frac{26.97}{286} } \][/tex]
Calculate the fraction:
[tex]\[ r = \sqrt{ 0.09432 } \][/tex]
Finally, take the square root:
[tex]\[ r \approx 0.30708418927176845 \][/tex]
Rounding this to the nearest hundredth:
[tex]\[ r \approx 0.31 \, m \][/tex]
Thus, the distance of the test charge from the source charge, rounded to the nearest hundredth, is:
[tex]\[ \boxed{0.31} \, m \][/tex]
[tex]\[ E = k \frac{Q}{r^2} \][/tex]
where:
- [tex]\(E\)[/tex] is the electric field,
- [tex]\(k\)[/tex] is Coulomb's constant ( [tex]\(8.99 \times 10^9 \, \frac{N \cdot m^2}{C^2} \)[/tex] ),
- [tex]\(Q\)[/tex] is the source charge ( [tex]\(3 \, \mu C = 3 \times 10^{-6} \, C\)[/tex] ), and
- [tex]\(r\)[/tex] is the distance we need to find.
We need to solve for [tex]\(r\)[/tex], the distance. Rearranging the equation to solve for [tex]\(r^2\)[/tex], we get:
[tex]\[ r^2 = k \frac{Q}{E} \][/tex]
Taking the square root of both sides, we get:
[tex]\[ r = \sqrt{ \frac{kQ}{E} } \][/tex]
Substituting in the given values:
[tex]\[ r = \sqrt{ \frac{8.99 \times 10^9 \, \frac{N \cdot m^2}{C^2} \times 3 \times 10^{-6} \, C}{2.86 \times 10^5 \, \frac{N}{C}} } \][/tex]
Calculate the value inside the square root:
[tex]\[ r = \sqrt{ \frac{8.99 \times 10^9 \times 3 \times 10^{-6}}{2.86 \times 10^5} } \][/tex]
Divide the products in the numerator and the denominator:
[tex]\[ r = \sqrt{ \frac{26.97 \times 10^3}{2.86 \times 10^5} } \][/tex]
Simplify the exponent part:
[tex]\[ r = \sqrt{ \frac{26.97}{2.86 \times 10^2} } \][/tex]
[tex]\[ r = \sqrt{ \frac{26.97}{286} } \][/tex]
Calculate the fraction:
[tex]\[ r = \sqrt{ 0.09432 } \][/tex]
Finally, take the square root:
[tex]\[ r \approx 0.30708418927176845 \][/tex]
Rounding this to the nearest hundredth:
[tex]\[ r \approx 0.31 \, m \][/tex]
Thus, the distance of the test charge from the source charge, rounded to the nearest hundredth, is:
[tex]\[ \boxed{0.31} \, m \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.