Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the distance between the source charge and the test charge, we can use Coulomb's Law as it pertains to electric fields. The relationship is given by:
[tex]\[ E = k \frac{Q}{r^2} \][/tex]
where:
- [tex]\(E\)[/tex] is the electric field,
- [tex]\(k\)[/tex] is Coulomb's constant ( [tex]\(8.99 \times 10^9 \, \frac{N \cdot m^2}{C^2} \)[/tex] ),
- [tex]\(Q\)[/tex] is the source charge ( [tex]\(3 \, \mu C = 3 \times 10^{-6} \, C\)[/tex] ), and
- [tex]\(r\)[/tex] is the distance we need to find.
We need to solve for [tex]\(r\)[/tex], the distance. Rearranging the equation to solve for [tex]\(r^2\)[/tex], we get:
[tex]\[ r^2 = k \frac{Q}{E} \][/tex]
Taking the square root of both sides, we get:
[tex]\[ r = \sqrt{ \frac{kQ}{E} } \][/tex]
Substituting in the given values:
[tex]\[ r = \sqrt{ \frac{8.99 \times 10^9 \, \frac{N \cdot m^2}{C^2} \times 3 \times 10^{-6} \, C}{2.86 \times 10^5 \, \frac{N}{C}} } \][/tex]
Calculate the value inside the square root:
[tex]\[ r = \sqrt{ \frac{8.99 \times 10^9 \times 3 \times 10^{-6}}{2.86 \times 10^5} } \][/tex]
Divide the products in the numerator and the denominator:
[tex]\[ r = \sqrt{ \frac{26.97 \times 10^3}{2.86 \times 10^5} } \][/tex]
Simplify the exponent part:
[tex]\[ r = \sqrt{ \frac{26.97}{2.86 \times 10^2} } \][/tex]
[tex]\[ r = \sqrt{ \frac{26.97}{286} } \][/tex]
Calculate the fraction:
[tex]\[ r = \sqrt{ 0.09432 } \][/tex]
Finally, take the square root:
[tex]\[ r \approx 0.30708418927176845 \][/tex]
Rounding this to the nearest hundredth:
[tex]\[ r \approx 0.31 \, m \][/tex]
Thus, the distance of the test charge from the source charge, rounded to the nearest hundredth, is:
[tex]\[ \boxed{0.31} \, m \][/tex]
[tex]\[ E = k \frac{Q}{r^2} \][/tex]
where:
- [tex]\(E\)[/tex] is the electric field,
- [tex]\(k\)[/tex] is Coulomb's constant ( [tex]\(8.99 \times 10^9 \, \frac{N \cdot m^2}{C^2} \)[/tex] ),
- [tex]\(Q\)[/tex] is the source charge ( [tex]\(3 \, \mu C = 3 \times 10^{-6} \, C\)[/tex] ), and
- [tex]\(r\)[/tex] is the distance we need to find.
We need to solve for [tex]\(r\)[/tex], the distance. Rearranging the equation to solve for [tex]\(r^2\)[/tex], we get:
[tex]\[ r^2 = k \frac{Q}{E} \][/tex]
Taking the square root of both sides, we get:
[tex]\[ r = \sqrt{ \frac{kQ}{E} } \][/tex]
Substituting in the given values:
[tex]\[ r = \sqrt{ \frac{8.99 \times 10^9 \, \frac{N \cdot m^2}{C^2} \times 3 \times 10^{-6} \, C}{2.86 \times 10^5 \, \frac{N}{C}} } \][/tex]
Calculate the value inside the square root:
[tex]\[ r = \sqrt{ \frac{8.99 \times 10^9 \times 3 \times 10^{-6}}{2.86 \times 10^5} } \][/tex]
Divide the products in the numerator and the denominator:
[tex]\[ r = \sqrt{ \frac{26.97 \times 10^3}{2.86 \times 10^5} } \][/tex]
Simplify the exponent part:
[tex]\[ r = \sqrt{ \frac{26.97}{2.86 \times 10^2} } \][/tex]
[tex]\[ r = \sqrt{ \frac{26.97}{286} } \][/tex]
Calculate the fraction:
[tex]\[ r = \sqrt{ 0.09432 } \][/tex]
Finally, take the square root:
[tex]\[ r \approx 0.30708418927176845 \][/tex]
Rounding this to the nearest hundredth:
[tex]\[ r \approx 0.31 \, m \][/tex]
Thus, the distance of the test charge from the source charge, rounded to the nearest hundredth, is:
[tex]\[ \boxed{0.31} \, m \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.