Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure! Let's build your polynomial step-by-step according to the given instructions:
1. Identifying Root Intercepts:
- We need to determine the factors of the polynomial based on the x-intercepts.
- We know the coaster should have an x-intercept at [tex]\( x = 500 \)[/tex], an intercept at [tex]\( x=0 \)[/tex], and another intercept at [tex]\( x=1000 \)[/tex].
2. Forming Factors:
- The x-intercepts [tex]\( x = 0 \)[/tex], [tex]\( x = 500 \)[/tex], and [tex]\( x = 1000 \)[/tex] will translate to polynomial factors. Remember, if the polynomial has an x-intercept at [tex]\( x = c \)[/tex], then [tex]\( (x - c) \)[/tex] will be a factor of the polynomial.
So the factors are:
- [tex]\( x \)[/tex] for the intercept at [tex]\( x = 0 \)[/tex]
- [tex]\( (x - 500) \)[/tex] for the intercept at [tex]\( x = 500 \)[/tex]
- [tex]\( (x - 1000) \)[/tex] for the intercept at [tex]\( x = 1000 \)[/tex]
3. Constructing the Polynomial:
- Multiply these factors together to form the polynomial.
- Since the polynomial needs to rise to a maximum, fall, and then rise again, we need the coefficients to capture this behavior adequately. The polynomial can be written as:
[tex]\[ y = a \cdot x \cdot (x - 500) \cdot (x - 1000) \][/tex]
Where `a` is a constant coefficient which can be any real number.
4. General Form of the Polynomial:
- The final polynomial in the required form would therefore be:
[tex]\[ y = a \cdot x \cdot (x - 500) \cdot (x - 1000) \][/tex]
This polynomial has the desired x-intercepts at [tex]\( x=0 \)[/tex], [tex]\( x=500 \)[/tex], and [tex]\( x=1000 \)[/tex], and shows the behavior mentioned in the initial description where it rises to a maximum, falls across the x-axis, and then rises again into [tex]\( x = 1000 \)[/tex].
1. Identifying Root Intercepts:
- We need to determine the factors of the polynomial based on the x-intercepts.
- We know the coaster should have an x-intercept at [tex]\( x = 500 \)[/tex], an intercept at [tex]\( x=0 \)[/tex], and another intercept at [tex]\( x=1000 \)[/tex].
2. Forming Factors:
- The x-intercepts [tex]\( x = 0 \)[/tex], [tex]\( x = 500 \)[/tex], and [tex]\( x = 1000 \)[/tex] will translate to polynomial factors. Remember, if the polynomial has an x-intercept at [tex]\( x = c \)[/tex], then [tex]\( (x - c) \)[/tex] will be a factor of the polynomial.
So the factors are:
- [tex]\( x \)[/tex] for the intercept at [tex]\( x = 0 \)[/tex]
- [tex]\( (x - 500) \)[/tex] for the intercept at [tex]\( x = 500 \)[/tex]
- [tex]\( (x - 1000) \)[/tex] for the intercept at [tex]\( x = 1000 \)[/tex]
3. Constructing the Polynomial:
- Multiply these factors together to form the polynomial.
- Since the polynomial needs to rise to a maximum, fall, and then rise again, we need the coefficients to capture this behavior adequately. The polynomial can be written as:
[tex]\[ y = a \cdot x \cdot (x - 500) \cdot (x - 1000) \][/tex]
Where `a` is a constant coefficient which can be any real number.
4. General Form of the Polynomial:
- The final polynomial in the required form would therefore be:
[tex]\[ y = a \cdot x \cdot (x - 500) \cdot (x - 1000) \][/tex]
This polynomial has the desired x-intercepts at [tex]\( x=0 \)[/tex], [tex]\( x=500 \)[/tex], and [tex]\( x=1000 \)[/tex], and shows the behavior mentioned in the initial description where it rises to a maximum, falls across the x-axis, and then rises again into [tex]\( x = 1000 \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.