Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure! Let's build your polynomial step-by-step according to the given instructions:
1. Identifying Root Intercepts:
- We need to determine the factors of the polynomial based on the x-intercepts.
- We know the coaster should have an x-intercept at [tex]\( x = 500 \)[/tex], an intercept at [tex]\( x=0 \)[/tex], and another intercept at [tex]\( x=1000 \)[/tex].
2. Forming Factors:
- The x-intercepts [tex]\( x = 0 \)[/tex], [tex]\( x = 500 \)[/tex], and [tex]\( x = 1000 \)[/tex] will translate to polynomial factors. Remember, if the polynomial has an x-intercept at [tex]\( x = c \)[/tex], then [tex]\( (x - c) \)[/tex] will be a factor of the polynomial.
So the factors are:
- [tex]\( x \)[/tex] for the intercept at [tex]\( x = 0 \)[/tex]
- [tex]\( (x - 500) \)[/tex] for the intercept at [tex]\( x = 500 \)[/tex]
- [tex]\( (x - 1000) \)[/tex] for the intercept at [tex]\( x = 1000 \)[/tex]
3. Constructing the Polynomial:
- Multiply these factors together to form the polynomial.
- Since the polynomial needs to rise to a maximum, fall, and then rise again, we need the coefficients to capture this behavior adequately. The polynomial can be written as:
[tex]\[ y = a \cdot x \cdot (x - 500) \cdot (x - 1000) \][/tex]
Where `a` is a constant coefficient which can be any real number.
4. General Form of the Polynomial:
- The final polynomial in the required form would therefore be:
[tex]\[ y = a \cdot x \cdot (x - 500) \cdot (x - 1000) \][/tex]
This polynomial has the desired x-intercepts at [tex]\( x=0 \)[/tex], [tex]\( x=500 \)[/tex], and [tex]\( x=1000 \)[/tex], and shows the behavior mentioned in the initial description where it rises to a maximum, falls across the x-axis, and then rises again into [tex]\( x = 1000 \)[/tex].
1. Identifying Root Intercepts:
- We need to determine the factors of the polynomial based on the x-intercepts.
- We know the coaster should have an x-intercept at [tex]\( x = 500 \)[/tex], an intercept at [tex]\( x=0 \)[/tex], and another intercept at [tex]\( x=1000 \)[/tex].
2. Forming Factors:
- The x-intercepts [tex]\( x = 0 \)[/tex], [tex]\( x = 500 \)[/tex], and [tex]\( x = 1000 \)[/tex] will translate to polynomial factors. Remember, if the polynomial has an x-intercept at [tex]\( x = c \)[/tex], then [tex]\( (x - c) \)[/tex] will be a factor of the polynomial.
So the factors are:
- [tex]\( x \)[/tex] for the intercept at [tex]\( x = 0 \)[/tex]
- [tex]\( (x - 500) \)[/tex] for the intercept at [tex]\( x = 500 \)[/tex]
- [tex]\( (x - 1000) \)[/tex] for the intercept at [tex]\( x = 1000 \)[/tex]
3. Constructing the Polynomial:
- Multiply these factors together to form the polynomial.
- Since the polynomial needs to rise to a maximum, fall, and then rise again, we need the coefficients to capture this behavior adequately. The polynomial can be written as:
[tex]\[ y = a \cdot x \cdot (x - 500) \cdot (x - 1000) \][/tex]
Where `a` is a constant coefficient which can be any real number.
4. General Form of the Polynomial:
- The final polynomial in the required form would therefore be:
[tex]\[ y = a \cdot x \cdot (x - 500) \cdot (x - 1000) \][/tex]
This polynomial has the desired x-intercepts at [tex]\( x=0 \)[/tex], [tex]\( x=500 \)[/tex], and [tex]\( x=1000 \)[/tex], and shows the behavior mentioned in the initial description where it rises to a maximum, falls across the x-axis, and then rises again into [tex]\( x = 1000 \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.