Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the correct equation for a circle with radius [tex]\( r \)[/tex] and center at [tex]\( (h, k) \)[/tex], we need to recall the general form of the equation for a circle.
The standard equation of a circle with center [tex]\((h, k)\)[/tex] and radius [tex]\( r \)[/tex] is given by:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
Let's analyze each of the provided options to find the one that matches this standard form.
A. [tex]\((x - k)^2 + (y - h)^2 = r^2\)[/tex]
This equation incorrectly switches the variables [tex]\( h \)[/tex] and [tex]\( k \)[/tex] as coordinates in the equation. The correct form doesn't swap these variables; it should have the form [tex]\((x - h)\)[/tex] and [tex]\((y - k)\)[/tex].
B. [tex]\(h^2 + k^2 = r^2\)[/tex]
This equation does not represent a circle’s equation in Cartesian coordinates. It looks like a Pythagorean theorem but does not fit the standard form of a circle.
C. [tex]\((x + h)^2 + (y + k)^2 = r^2\)[/tex]
This option incorrectly includes addition instead of subtraction. The standard form includes the subtraction of the center coordinates from the x and y coordinates, respectively.
D. [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex]
This matches the standard form exactly, with the correct subtraction of [tex]\( h \)[/tex] from [tex]\( x \)[/tex] and [tex]\( k \)[/tex] from [tex]\( y \)[/tex].
Thus, the correct equation for a circle with radius [tex]\( r \)[/tex] and center at [tex]\( (h, k) \)[/tex] is:
[tex]\[ \boxed{(x - h)^2 + (y - k)^2 = r^2} \][/tex]
So, the correct answer is option D.
The standard equation of a circle with center [tex]\((h, k)\)[/tex] and radius [tex]\( r \)[/tex] is given by:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
Let's analyze each of the provided options to find the one that matches this standard form.
A. [tex]\((x - k)^2 + (y - h)^2 = r^2\)[/tex]
This equation incorrectly switches the variables [tex]\( h \)[/tex] and [tex]\( k \)[/tex] as coordinates in the equation. The correct form doesn't swap these variables; it should have the form [tex]\((x - h)\)[/tex] and [tex]\((y - k)\)[/tex].
B. [tex]\(h^2 + k^2 = r^2\)[/tex]
This equation does not represent a circle’s equation in Cartesian coordinates. It looks like a Pythagorean theorem but does not fit the standard form of a circle.
C. [tex]\((x + h)^2 + (y + k)^2 = r^2\)[/tex]
This option incorrectly includes addition instead of subtraction. The standard form includes the subtraction of the center coordinates from the x and y coordinates, respectively.
D. [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex]
This matches the standard form exactly, with the correct subtraction of [tex]\( h \)[/tex] from [tex]\( x \)[/tex] and [tex]\( k \)[/tex] from [tex]\( y \)[/tex].
Thus, the correct equation for a circle with radius [tex]\( r \)[/tex] and center at [tex]\( (h, k) \)[/tex] is:
[tex]\[ \boxed{(x - h)^2 + (y - k)^2 = r^2} \][/tex]
So, the correct answer is option D.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.