Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's tackle the problem step-by-step.
#### Given:
The equation for the height [tex]\( y \)[/tex] of the rocket after [tex]\( t \)[/tex] seconds is given by:
[tex]\[ y = -16t^2 + 76t + 8 \][/tex]
### Part a) When would the rocket hit the ground?
The rocket hits the ground when its height [tex]\( y \)[/tex] is zero. Therefore, we need to solve the equation:
[tex]\[ 0 = -16t^2 + 76t + 8 \][/tex]
This is a quadratic equation of the form [tex]\( at^2 + bt + c = 0 \)[/tex], where:
[tex]\[ a = -16, \quad b = 76, \quad c = 8 \][/tex]
To solve for [tex]\( t \)[/tex], we use the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Plugging in the values, we get:
[tex]\[ t = \frac{-76 \pm \sqrt{76^2 - 4(-16)(8)}}{2(-16)} \][/tex]
[tex]\[ t = \frac{-76 \pm \sqrt{5776 + 512}}{-32} \][/tex]
[tex]\[ t = \frac{-76 \pm \sqrt{6288}}{-32} \][/tex]
[tex]\[ t = \frac{-76 \pm 79.32}{-32} \][/tex]
Thus, we get two solutions:
[tex]\[ t_1 = \frac{-76 + 79.32}{-32} \approx \frac{3.32}{-32} \approx -0.104 \quad \text{(Not a valid solution as time can't be negative)} \][/tex]
[tex]\[ t_2 = \frac{-76 - 79.32}{-32} \approx \frac{-155.32}{-32} \approx 4.85 \][/tex]
Therefore, the rocket hits the ground after approximately [tex]\( t = 4.85 \)[/tex] seconds.
### Part b) How high is the maximum height of the rocket?
The maximum height of a parabolic trajectory in the form [tex]\( y = ax^2 + bx + c \)[/tex] occurs at the vertex, given by the formula:
[tex]\[ t = -\frac{b}{2a} \][/tex]
Here:
[tex]\[ a = -16 \quad \text{and} \quad b = 76 \][/tex]
Therefore:
[tex]\[ t = -\frac{76}{2(-16)} = \frac{76}{32} = 2.375 \text{ seconds} \][/tex]
To find the maximum height, we substitute [tex]\( t = 2.375 \)[/tex] back into the original equation:
[tex]\[ y = -16(2.375)^2 + 76(2.375) + 8 \][/tex]
[tex]\[ y = -16(5.640625) + 180.5 + 8 \][/tex]
[tex]\[ y = -90.25 + 180.5 + 8 \][/tex]
[tex]\[ y = 98.25 \][/tex]
Therefore, the maximum height of the rocket is [tex]\( 98.25 \)[/tex] feet.
### Summary:
a) The rocket hits the ground after approximately [tex]\( 4.85 \)[/tex] seconds.
b) The maximum height of the rocket is [tex]\( 98.25 \)[/tex] feet.
#### Given:
The equation for the height [tex]\( y \)[/tex] of the rocket after [tex]\( t \)[/tex] seconds is given by:
[tex]\[ y = -16t^2 + 76t + 8 \][/tex]
### Part a) When would the rocket hit the ground?
The rocket hits the ground when its height [tex]\( y \)[/tex] is zero. Therefore, we need to solve the equation:
[tex]\[ 0 = -16t^2 + 76t + 8 \][/tex]
This is a quadratic equation of the form [tex]\( at^2 + bt + c = 0 \)[/tex], where:
[tex]\[ a = -16, \quad b = 76, \quad c = 8 \][/tex]
To solve for [tex]\( t \)[/tex], we use the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Plugging in the values, we get:
[tex]\[ t = \frac{-76 \pm \sqrt{76^2 - 4(-16)(8)}}{2(-16)} \][/tex]
[tex]\[ t = \frac{-76 \pm \sqrt{5776 + 512}}{-32} \][/tex]
[tex]\[ t = \frac{-76 \pm \sqrt{6288}}{-32} \][/tex]
[tex]\[ t = \frac{-76 \pm 79.32}{-32} \][/tex]
Thus, we get two solutions:
[tex]\[ t_1 = \frac{-76 + 79.32}{-32} \approx \frac{3.32}{-32} \approx -0.104 \quad \text{(Not a valid solution as time can't be negative)} \][/tex]
[tex]\[ t_2 = \frac{-76 - 79.32}{-32} \approx \frac{-155.32}{-32} \approx 4.85 \][/tex]
Therefore, the rocket hits the ground after approximately [tex]\( t = 4.85 \)[/tex] seconds.
### Part b) How high is the maximum height of the rocket?
The maximum height of a parabolic trajectory in the form [tex]\( y = ax^2 + bx + c \)[/tex] occurs at the vertex, given by the formula:
[tex]\[ t = -\frac{b}{2a} \][/tex]
Here:
[tex]\[ a = -16 \quad \text{and} \quad b = 76 \][/tex]
Therefore:
[tex]\[ t = -\frac{76}{2(-16)} = \frac{76}{32} = 2.375 \text{ seconds} \][/tex]
To find the maximum height, we substitute [tex]\( t = 2.375 \)[/tex] back into the original equation:
[tex]\[ y = -16(2.375)^2 + 76(2.375) + 8 \][/tex]
[tex]\[ y = -16(5.640625) + 180.5 + 8 \][/tex]
[tex]\[ y = -90.25 + 180.5 + 8 \][/tex]
[tex]\[ y = 98.25 \][/tex]
Therefore, the maximum height of the rocket is [tex]\( 98.25 \)[/tex] feet.
### Summary:
a) The rocket hits the ground after approximately [tex]\( 4.85 \)[/tex] seconds.
b) The maximum height of the rocket is [tex]\( 98.25 \)[/tex] feet.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.