Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which number produces an irrational number when multiplied by 0.5, let's evaluate each option step-by-step.
Option A: [tex]\(\sqrt{16}\)[/tex]
1. Compute [tex]\(\sqrt{16}\)[/tex]:
[tex]\[ \sqrt{16} = 4 \][/tex]
2. Multiply by 0.5:
[tex]\[ 0.5 \times 4 = 2 \][/tex]
The result is 2, which is a rational number.
Option B: [tex]\(0.555 \ldots\)[/tex]
1. Given [tex]\(0.555 \ldots\)[/tex], which is actually 0.555 repeated (or simply, a rational number).
2. Multiply by 0.5:
[tex]\[ 0.5 \times 0.555 \ldots = 0.2775 \][/tex]
The result is 0.2775, which is a rational number.
Option C: [tex]\(\frac{1}{3}\)[/tex]
1. Compute [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[ \frac{1}{3} \approx 0.333 \ldots \][/tex]
2. Multiply by 0.5:
[tex]\[ 0.5 \times \frac{1}{3} = \frac{1}{6} \approx 0.1667 \][/tex]
The result is [tex]\(\frac{1}{6}\)[/tex], which is also a rational number.
Option D: [tex]\(\sqrt{3}\)[/tex]
1. Compute [tex]\(\sqrt{3}\)[/tex]:
[tex]\[ \sqrt{3} \approx 1.732 \][/tex]
2. Multiply by 0.5:
[tex]\[ 0.5 \times \sqrt{3} \approx 0.5 \times 1.732 \approx 0.866 \][/tex]
The result is [tex]\(0.5 \times \sqrt{3}\)[/tex], which is still an irrational number because the product of a rational number (0.5) and an irrational number ([tex]\(\sqrt{3}\)[/tex]) is irrational.
Thus, the option that when multiplied by 0.5 produces an irrational number is:
[tex]\[ \boxed{4} \][/tex]
Option A: [tex]\(\sqrt{16}\)[/tex]
1. Compute [tex]\(\sqrt{16}\)[/tex]:
[tex]\[ \sqrt{16} = 4 \][/tex]
2. Multiply by 0.5:
[tex]\[ 0.5 \times 4 = 2 \][/tex]
The result is 2, which is a rational number.
Option B: [tex]\(0.555 \ldots\)[/tex]
1. Given [tex]\(0.555 \ldots\)[/tex], which is actually 0.555 repeated (or simply, a rational number).
2. Multiply by 0.5:
[tex]\[ 0.5 \times 0.555 \ldots = 0.2775 \][/tex]
The result is 0.2775, which is a rational number.
Option C: [tex]\(\frac{1}{3}\)[/tex]
1. Compute [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[ \frac{1}{3} \approx 0.333 \ldots \][/tex]
2. Multiply by 0.5:
[tex]\[ 0.5 \times \frac{1}{3} = \frac{1}{6} \approx 0.1667 \][/tex]
The result is [tex]\(\frac{1}{6}\)[/tex], which is also a rational number.
Option D: [tex]\(\sqrt{3}\)[/tex]
1. Compute [tex]\(\sqrt{3}\)[/tex]:
[tex]\[ \sqrt{3} \approx 1.732 \][/tex]
2. Multiply by 0.5:
[tex]\[ 0.5 \times \sqrt{3} \approx 0.5 \times 1.732 \approx 0.866 \][/tex]
The result is [tex]\(0.5 \times \sqrt{3}\)[/tex], which is still an irrational number because the product of a rational number (0.5) and an irrational number ([tex]\(\sqrt{3}\)[/tex]) is irrational.
Thus, the option that when multiplied by 0.5 produces an irrational number is:
[tex]\[ \boxed{4} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.