Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which number produces an irrational number when multiplied by 0.5, let's evaluate each option step-by-step.
Option A: [tex]\(\sqrt{16}\)[/tex]
1. Compute [tex]\(\sqrt{16}\)[/tex]:
[tex]\[ \sqrt{16} = 4 \][/tex]
2. Multiply by 0.5:
[tex]\[ 0.5 \times 4 = 2 \][/tex]
The result is 2, which is a rational number.
Option B: [tex]\(0.555 \ldots\)[/tex]
1. Given [tex]\(0.555 \ldots\)[/tex], which is actually 0.555 repeated (or simply, a rational number).
2. Multiply by 0.5:
[tex]\[ 0.5 \times 0.555 \ldots = 0.2775 \][/tex]
The result is 0.2775, which is a rational number.
Option C: [tex]\(\frac{1}{3}\)[/tex]
1. Compute [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[ \frac{1}{3} \approx 0.333 \ldots \][/tex]
2. Multiply by 0.5:
[tex]\[ 0.5 \times \frac{1}{3} = \frac{1}{6} \approx 0.1667 \][/tex]
The result is [tex]\(\frac{1}{6}\)[/tex], which is also a rational number.
Option D: [tex]\(\sqrt{3}\)[/tex]
1. Compute [tex]\(\sqrt{3}\)[/tex]:
[tex]\[ \sqrt{3} \approx 1.732 \][/tex]
2. Multiply by 0.5:
[tex]\[ 0.5 \times \sqrt{3} \approx 0.5 \times 1.732 \approx 0.866 \][/tex]
The result is [tex]\(0.5 \times \sqrt{3}\)[/tex], which is still an irrational number because the product of a rational number (0.5) and an irrational number ([tex]\(\sqrt{3}\)[/tex]) is irrational.
Thus, the option that when multiplied by 0.5 produces an irrational number is:
[tex]\[ \boxed{4} \][/tex]
Option A: [tex]\(\sqrt{16}\)[/tex]
1. Compute [tex]\(\sqrt{16}\)[/tex]:
[tex]\[ \sqrt{16} = 4 \][/tex]
2. Multiply by 0.5:
[tex]\[ 0.5 \times 4 = 2 \][/tex]
The result is 2, which is a rational number.
Option B: [tex]\(0.555 \ldots\)[/tex]
1. Given [tex]\(0.555 \ldots\)[/tex], which is actually 0.555 repeated (or simply, a rational number).
2. Multiply by 0.5:
[tex]\[ 0.5 \times 0.555 \ldots = 0.2775 \][/tex]
The result is 0.2775, which is a rational number.
Option C: [tex]\(\frac{1}{3}\)[/tex]
1. Compute [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[ \frac{1}{3} \approx 0.333 \ldots \][/tex]
2. Multiply by 0.5:
[tex]\[ 0.5 \times \frac{1}{3} = \frac{1}{6} \approx 0.1667 \][/tex]
The result is [tex]\(\frac{1}{6}\)[/tex], which is also a rational number.
Option D: [tex]\(\sqrt{3}\)[/tex]
1. Compute [tex]\(\sqrt{3}\)[/tex]:
[tex]\[ \sqrt{3} \approx 1.732 \][/tex]
2. Multiply by 0.5:
[tex]\[ 0.5 \times \sqrt{3} \approx 0.5 \times 1.732 \approx 0.866 \][/tex]
The result is [tex]\(0.5 \times \sqrt{3}\)[/tex], which is still an irrational number because the product of a rational number (0.5) and an irrational number ([tex]\(\sqrt{3}\)[/tex]) is irrational.
Thus, the option that when multiplied by 0.5 produces an irrational number is:
[tex]\[ \boxed{4} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.