Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the exact value of [tex]\(\tan \left(\sin ^{-1}\left(-\frac{3}{5}\right)\right)\)[/tex], we need to go through a few steps to understand the problem properly.
1. Understand the Inverse Sine Function:
[tex]\(\sin^{-1}\left(-\frac{3}{5}\right)\)[/tex] represents an angle [tex]\(\theta\)[/tex] such that [tex]\(\sin(\theta) = -\frac{3}{5}\)[/tex].
2. Identify the Known Values:
Knowing [tex]\(\sin(\theta) = -\frac{3}{5}\)[/tex], we can imagine a right-angled triangle where the opposite side to the angle [tex]\(\theta\)[/tex] is [tex]\(-3\)[/tex] (since [tex]\(\sin\)[/tex] is negative) and the hypotenuse is [tex]\(5\)[/tex].
3. Use the Pythagorean Theorem:
To find the adjacent side of the triangle, we can use the Pythagorean theorem:
[tex]\[ (\text{hypotenuse})^2 = (\text{opposite})^2 + (\text{adjacent})^2 \][/tex]
Plugging in the values we have:
[tex]\[ 5^2 = (-3)^2 + (\text{adjacent})^2 \][/tex]
[tex]\[ 25 = 9 + (\text{adjacent})^2 \][/tex]
[tex]\[ (\text{adjacent})^2 = 25 - 9 \][/tex]
[tex]\[ (\text{adjacent})^2 = 16 \][/tex]
[tex]\[ \text{adjacent} = 4 \][/tex]
4. Consider the Sign of the Adjacent Side:
Since the original angle [tex]\(\theta\)[/tex] is in the fourth quadrant (where sine is negative and cosine is positive), the adjacent side is positive.
5. Compute the Tangent:
The tangent of an angle in a right triangle is given by the ratio of the opposite side to the adjacent side.
[tex]\[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
Plugging in our values:
[tex]\[ \tan(\theta) = \frac{-3}{4} \][/tex]
6. Result:
The exact value of [tex]\(\tan \left(\sin^{-1}\left(-\frac{3}{5}\right)\right)\)[/tex] is therefore:
[tex]\[ -0.15 \][/tex]
Thus, the exact value of [tex]\(\tan \left(\sin^{-1}\left(-\frac{3}{5}\right)\right)\)[/tex] is [tex]\(-0.15\)[/tex].
1. Understand the Inverse Sine Function:
[tex]\(\sin^{-1}\left(-\frac{3}{5}\right)\)[/tex] represents an angle [tex]\(\theta\)[/tex] such that [tex]\(\sin(\theta) = -\frac{3}{5}\)[/tex].
2. Identify the Known Values:
Knowing [tex]\(\sin(\theta) = -\frac{3}{5}\)[/tex], we can imagine a right-angled triangle where the opposite side to the angle [tex]\(\theta\)[/tex] is [tex]\(-3\)[/tex] (since [tex]\(\sin\)[/tex] is negative) and the hypotenuse is [tex]\(5\)[/tex].
3. Use the Pythagorean Theorem:
To find the adjacent side of the triangle, we can use the Pythagorean theorem:
[tex]\[ (\text{hypotenuse})^2 = (\text{opposite})^2 + (\text{adjacent})^2 \][/tex]
Plugging in the values we have:
[tex]\[ 5^2 = (-3)^2 + (\text{adjacent})^2 \][/tex]
[tex]\[ 25 = 9 + (\text{adjacent})^2 \][/tex]
[tex]\[ (\text{adjacent})^2 = 25 - 9 \][/tex]
[tex]\[ (\text{adjacent})^2 = 16 \][/tex]
[tex]\[ \text{adjacent} = 4 \][/tex]
4. Consider the Sign of the Adjacent Side:
Since the original angle [tex]\(\theta\)[/tex] is in the fourth quadrant (where sine is negative and cosine is positive), the adjacent side is positive.
5. Compute the Tangent:
The tangent of an angle in a right triangle is given by the ratio of the opposite side to the adjacent side.
[tex]\[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
Plugging in our values:
[tex]\[ \tan(\theta) = \frac{-3}{4} \][/tex]
6. Result:
The exact value of [tex]\(\tan \left(\sin^{-1}\left(-\frac{3}{5}\right)\right)\)[/tex] is therefore:
[tex]\[ -0.15 \][/tex]
Thus, the exact value of [tex]\(\tan \left(\sin^{-1}\left(-\frac{3}{5}\right)\right)\)[/tex] is [tex]\(-0.15\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.