Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the volume of gas produced when 0.1 moles of magnesium nitrate (Mg(NO₃)₂) decomposes completely, we need to use the stoichiometry of the given chemical equation and the ideal gas law's approximation that 1 mole of any gas at standard temperature and pressure (STP) occupies 22.4 dm³.
1. Balanced Chemical Equation:
[tex]\[ 2 \, Mg(NO_3)_2(s) \rightarrow 2 \, MgO(s) + 4 \, NO_2(g) + O_2(g) \][/tex]
2. Determine the moles of gases produced:
- According to the balanced equation, 2 moles of Mg(NO₃)₂ produce 4 moles of NO₂ and 1 mole of O₂.
- Therefore, 1 mole of Mg(NO₃)₂ produces 2 moles of NO₂ and 0.5 mole of O₂.
3. For 0.1 moles of Mg(NO₃)₂:
- Moles of NO₂ produced: [tex]\(0.1 \, \text{moles of Mg(NO₃)₂} \times 2 \, \frac{\text{moles of NO₂}}{\text{moles of Mg(NO₃)₂}} = 0.2 \, \text{moles of NO₂}\)[/tex]
- Moles of O₂ produced: [tex]\(0.1 \, \text{moles of Mg(NO₃)₂} \times 0.5 \, \frac{\text{moles of O₂}}{\text{moles of Mg(NO₃)₂}} = 0.05 \, \text{moles of O₂}\)[/tex]
4. Total moles of gas produced:
[tex]\[ 0.2 \, \text{moles of NO₂} + 0.05 \, \text{moles of O₂} = 0.25 \, \text{moles of gas} \][/tex]
5. Volume of gas at STP:
- Given that 1 mole of any gas at STP occupies 22.4 dm³:
[tex]\[ \text{Volume of gas} = 0.25 \, \text{moles} \times 22.4 \, \frac{\text{dm}^3}{\text{mole}} = 5.6 \, \text{dm}^3 \][/tex]
Therefore, the volume of gas produced when 0.1 moles of magnesium nitrate decompose completely is:
[tex]\[ \boxed{5.6 \, \text{dm}^3} \][/tex]
Since none of the provided options match this volume exactly, it seems there was a mistake in the provided options. The correct volume should be [tex]\(5.6 \, \text{dm}^3\)[/tex].
1. Balanced Chemical Equation:
[tex]\[ 2 \, Mg(NO_3)_2(s) \rightarrow 2 \, MgO(s) + 4 \, NO_2(g) + O_2(g) \][/tex]
2. Determine the moles of gases produced:
- According to the balanced equation, 2 moles of Mg(NO₃)₂ produce 4 moles of NO₂ and 1 mole of O₂.
- Therefore, 1 mole of Mg(NO₃)₂ produces 2 moles of NO₂ and 0.5 mole of O₂.
3. For 0.1 moles of Mg(NO₃)₂:
- Moles of NO₂ produced: [tex]\(0.1 \, \text{moles of Mg(NO₃)₂} \times 2 \, \frac{\text{moles of NO₂}}{\text{moles of Mg(NO₃)₂}} = 0.2 \, \text{moles of NO₂}\)[/tex]
- Moles of O₂ produced: [tex]\(0.1 \, \text{moles of Mg(NO₃)₂} \times 0.5 \, \frac{\text{moles of O₂}}{\text{moles of Mg(NO₃)₂}} = 0.05 \, \text{moles of O₂}\)[/tex]
4. Total moles of gas produced:
[tex]\[ 0.2 \, \text{moles of NO₂} + 0.05 \, \text{moles of O₂} = 0.25 \, \text{moles of gas} \][/tex]
5. Volume of gas at STP:
- Given that 1 mole of any gas at STP occupies 22.4 dm³:
[tex]\[ \text{Volume of gas} = 0.25 \, \text{moles} \times 22.4 \, \frac{\text{dm}^3}{\text{mole}} = 5.6 \, \text{dm}^3 \][/tex]
Therefore, the volume of gas produced when 0.1 moles of magnesium nitrate decompose completely is:
[tex]\[ \boxed{5.6 \, \text{dm}^3} \][/tex]
Since none of the provided options match this volume exactly, it seems there was a mistake in the provided options. The correct volume should be [tex]\(5.6 \, \text{dm}^3\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.