Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Solve for [tex]\( x \)[/tex].

[tex]\[ \log_5(x + 2) = 1 - \log_5(x + 6) \][/tex]

If there is more than one solution, separate them with commas. If there is no solution, click on "No solution".

[tex]\[ x = \quad \square \][/tex]
[tex]\[ \square \][/tex] No solution

Sagot :

To solve the equation [tex]\(\log_5(x + 2) = 1 - \log_5(x + 6)\)[/tex], we'll proceed with the following steps:

1. Isolate the logarithms on one side:
[tex]\[ \log_5(x + 2) + \log_5(x + 6) = 1 \][/tex]

2. Use the properties of logarithms:
Recall the property of logarithms that states [tex]\(\log_b(a) + \log_b(c) = \log_b(ac)\)[/tex]. Applying this property, we have:
[tex]\[ \log_5((x + 2)(x + 6)) = 1 \][/tex]

3. Convert the logarithmic equation to an exponential equation:
Recall that if [tex]\(\log_b(y) = c\)[/tex], then [tex]\(b^c = y\)[/tex]. So, we get:
[tex]\[ 5^1 = (x + 2)(x + 6) \][/tex]

4. Simplify and solve the quadratic equation:
[tex]\[ 5 = (x + 2)(x + 6) \][/tex]
Expand the right-hand side:
[tex]\[ 5 = x^2 + 6x + 2x + 12 \][/tex]
[tex]\[ 5 = x^2 + 8x + 12 \][/tex]
Subtract 5 from both sides to set the equation to zero:
[tex]\[ 0 = x^2 + 8x + 7 \][/tex]

5. Factor the quadratic equation:
We need to factor [tex]\(x^2 + 8x + 7\)[/tex]. Looking for two numbers that multiply to 7 and add up to 8, we get 1 and 7.
[tex]\[ 0 = (x + 1)(x + 7) \][/tex]

6. Solve for [tex]\(x\)[/tex]:
[tex]\[ x + 1 = 0 \quad \text{or} \quad x + 7 = 0 \][/tex]
[tex]\[ x = -1 \quad \text{or} \quad x = -7 \][/tex]

7. Check for valid solutions:
* For [tex]\(x = -1\)[/tex]:
[tex]\[ \log_5(-1 + 2) = \log_5(1) = 0 \][/tex]
[tex]\[ 1 - \log_5(-1 + 6) = 1 - \log_5(5) = 1 - 1 = 0 \][/tex]
Both sides are equal, so [tex]\(x = -1\)[/tex] is a valid solution.

* For [tex]\(x = -7\)[/tex]:
[tex]\[ \log_5(-7 + 2) = \log_5(-5) \][/tex]
The logarithm of a negative number is not defined, so [tex]\(x = -7\)[/tex] is not a valid solution.

Thus, the only valid solution is:
[tex]\[ x = -1 \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.