At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Find all solutions of the equation in the interval [tex]\([0, 2\pi)\)[/tex]:

[tex]\[2 \cos \theta - \sqrt{2} = 0\][/tex]

Write your answer in radians in terms of [tex]\(\pi\)[/tex]. If there is more than one solution, separate them with commas.

[tex]\[\theta = \][/tex]


Sagot :

To find the solutions of the equation [tex]\(2 \cos \theta - \sqrt{2} = 0\)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex], follow these steps:

1. Isolate the cosine term:
[tex]\[ 2 \cos \theta = \sqrt{2} \][/tex]

2. Solve for [tex]\(\cos \theta\)[/tex] by dividing both sides by 2:
[tex]\[ \cos \theta = \frac{\sqrt{2}}{2} \][/tex]

3. Recognize the standard angles where the cosine value is [tex]\(\frac{\sqrt{2}}{2}\)[/tex]:
The cosine function [tex]\(\cos \theta = \frac{\sqrt{2}}{2}\)[/tex] corresponds to angles [tex]\(\theta\)[/tex] where:
[tex]\[ \theta = \frac{\pi}{4} + 2k\pi \quad \text{or} \quad \theta = 2\pi - \frac{\pi}{4} + 2k\pi \][/tex]
where [tex]\(k\)[/tex] is any integer, since [tex]\(\cos(\theta) = \cos(-\theta)\)[/tex].

4. Simplify the angles within the interval [tex]\([0, 2\pi)\)[/tex]:
[tex]\[ \theta = \frac{\pi}{4} \][/tex]
[tex]\[ \theta = 2\pi - \frac{\pi}{4} = \frac{8\pi}{4} - \frac{\pi}{4} = \frac{7\pi}{4} \][/tex]

5. Verify that these angles are within the given interval [tex]\(0 \leq \theta < 2\pi\)[/tex]:
Both [tex]\(\frac{\pi}{4}\)[/tex] and [tex]\(\frac{7\pi}{4}\)[/tex] lie within the interval [tex]\([0, 2\pi)\)[/tex].

Therefore, the solutions to the equation [tex]\(2 \cos \theta - \sqrt{2} = 0\)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex] are:
[tex]\[ \theta = \frac{\pi}{4}, \frac{7\pi}{4} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.