Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
The student's methodology contains an error. Let's go through the process step-by-step to identify where the mistake lies.
1. Identifying the Points and the Total Number of Sections:
- Point [tex]\( A \)[/tex] is at -6 and Point [tex]\( B \)[/tex] is at 2.
- We need to partition the segment [tex]\( AB \)[/tex] in the ratio [tex]\( 3:4 \)[/tex].
- The total number of sections created by this ratio is [tex]\( 3 + 4 = 7 \)[/tex].
2. Calculating the Specific Fraction of the Segment:
- The correct fraction that represents the position of point [tex]\( C \)[/tex] along the line segment [tex]\( AB \)[/tex] is [tex]\( \frac{3}{7} \)[/tex]. This fraction signifies that point [tex]\( C \)[/tex] is closer to [tex]\( A \)[/tex] than [tex]\( B \)[/tex], covering 3 parts out of the total 7 parts of the segment.
3. Finding the Distance Covered by the Fraction:
- Compute the distance from [tex]\( A \)[/tex] to [tex]\( B \)[/tex]: since [tex]\( B - A = 2 - (-6) = 8 \)[/tex].
- The scaled distance for point [tex]\( C \)[/tex] using the fraction [tex]\( \frac{3}{7} \)[/tex] is calculated as [tex]\( \frac{3}{7} \times 8 = 3.4285714285714284 \)[/tex].
4. Determining the Position of Point [tex]\( C \)[/tex]:
- To find [tex]\( C \)[/tex], start at [tex]\( A \)[/tex] and move the scaled distance towards [tex]\( B \)[/tex]:
- Thus, point [tex]\( C \)[/tex] is located at [tex]\( A + \text{(fraction of the distance)} \)[/tex], which is [tex]\( -6 + \frac{3}{7} \times 8 \)[/tex].
- This simplifies to:
[tex]\[ -6 + 3.4285714285714284 = -2.5714285714285716 \][/tex]
Therefore, point [tex]\( C \)[/tex] is at approximately [tex]\(-2.57\)[/tex].
Analysis of the Student's Work:
- The student mistakenly used [tex]\( \frac{3}{4} \)[/tex] instead of [tex]\( \frac{3}{7} \)[/tex].
- Correcting the student's fractions and calculations reveals the accurate placement of [tex]\( C \)[/tex].
Thus, the student's approach is incorrect and the accurate calculations show that point [tex]\( C \)[/tex] is [tex]\( -2.57 \)[/tex].
1. Identifying the Points and the Total Number of Sections:
- Point [tex]\( A \)[/tex] is at -6 and Point [tex]\( B \)[/tex] is at 2.
- We need to partition the segment [tex]\( AB \)[/tex] in the ratio [tex]\( 3:4 \)[/tex].
- The total number of sections created by this ratio is [tex]\( 3 + 4 = 7 \)[/tex].
2. Calculating the Specific Fraction of the Segment:
- The correct fraction that represents the position of point [tex]\( C \)[/tex] along the line segment [tex]\( AB \)[/tex] is [tex]\( \frac{3}{7} \)[/tex]. This fraction signifies that point [tex]\( C \)[/tex] is closer to [tex]\( A \)[/tex] than [tex]\( B \)[/tex], covering 3 parts out of the total 7 parts of the segment.
3. Finding the Distance Covered by the Fraction:
- Compute the distance from [tex]\( A \)[/tex] to [tex]\( B \)[/tex]: since [tex]\( B - A = 2 - (-6) = 8 \)[/tex].
- The scaled distance for point [tex]\( C \)[/tex] using the fraction [tex]\( \frac{3}{7} \)[/tex] is calculated as [tex]\( \frac{3}{7} \times 8 = 3.4285714285714284 \)[/tex].
4. Determining the Position of Point [tex]\( C \)[/tex]:
- To find [tex]\( C \)[/tex], start at [tex]\( A \)[/tex] and move the scaled distance towards [tex]\( B \)[/tex]:
- Thus, point [tex]\( C \)[/tex] is located at [tex]\( A + \text{(fraction of the distance)} \)[/tex], which is [tex]\( -6 + \frac{3}{7} \times 8 \)[/tex].
- This simplifies to:
[tex]\[ -6 + 3.4285714285714284 = -2.5714285714285716 \][/tex]
Therefore, point [tex]\( C \)[/tex] is at approximately [tex]\(-2.57\)[/tex].
Analysis of the Student's Work:
- The student mistakenly used [tex]\( \frac{3}{4} \)[/tex] instead of [tex]\( \frac{3}{7} \)[/tex].
- Correcting the student's fractions and calculations reveals the accurate placement of [tex]\( C \)[/tex].
Thus, the student's approach is incorrect and the accurate calculations show that point [tex]\( C \)[/tex] is [tex]\( -2.57 \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.