Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
The student's methodology contains an error. Let's go through the process step-by-step to identify where the mistake lies.
1. Identifying the Points and the Total Number of Sections:
- Point [tex]\( A \)[/tex] is at -6 and Point [tex]\( B \)[/tex] is at 2.
- We need to partition the segment [tex]\( AB \)[/tex] in the ratio [tex]\( 3:4 \)[/tex].
- The total number of sections created by this ratio is [tex]\( 3 + 4 = 7 \)[/tex].
2. Calculating the Specific Fraction of the Segment:
- The correct fraction that represents the position of point [tex]\( C \)[/tex] along the line segment [tex]\( AB \)[/tex] is [tex]\( \frac{3}{7} \)[/tex]. This fraction signifies that point [tex]\( C \)[/tex] is closer to [tex]\( A \)[/tex] than [tex]\( B \)[/tex], covering 3 parts out of the total 7 parts of the segment.
3. Finding the Distance Covered by the Fraction:
- Compute the distance from [tex]\( A \)[/tex] to [tex]\( B \)[/tex]: since [tex]\( B - A = 2 - (-6) = 8 \)[/tex].
- The scaled distance for point [tex]\( C \)[/tex] using the fraction [tex]\( \frac{3}{7} \)[/tex] is calculated as [tex]\( \frac{3}{7} \times 8 = 3.4285714285714284 \)[/tex].
4. Determining the Position of Point [tex]\( C \)[/tex]:
- To find [tex]\( C \)[/tex], start at [tex]\( A \)[/tex] and move the scaled distance towards [tex]\( B \)[/tex]:
- Thus, point [tex]\( C \)[/tex] is located at [tex]\( A + \text{(fraction of the distance)} \)[/tex], which is [tex]\( -6 + \frac{3}{7} \times 8 \)[/tex].
- This simplifies to:
[tex]\[ -6 + 3.4285714285714284 = -2.5714285714285716 \][/tex]
Therefore, point [tex]\( C \)[/tex] is at approximately [tex]\(-2.57\)[/tex].
Analysis of the Student's Work:
- The student mistakenly used [tex]\( \frac{3}{4} \)[/tex] instead of [tex]\( \frac{3}{7} \)[/tex].
- Correcting the student's fractions and calculations reveals the accurate placement of [tex]\( C \)[/tex].
Thus, the student's approach is incorrect and the accurate calculations show that point [tex]\( C \)[/tex] is [tex]\( -2.57 \)[/tex].
1. Identifying the Points and the Total Number of Sections:
- Point [tex]\( A \)[/tex] is at -6 and Point [tex]\( B \)[/tex] is at 2.
- We need to partition the segment [tex]\( AB \)[/tex] in the ratio [tex]\( 3:4 \)[/tex].
- The total number of sections created by this ratio is [tex]\( 3 + 4 = 7 \)[/tex].
2. Calculating the Specific Fraction of the Segment:
- The correct fraction that represents the position of point [tex]\( C \)[/tex] along the line segment [tex]\( AB \)[/tex] is [tex]\( \frac{3}{7} \)[/tex]. This fraction signifies that point [tex]\( C \)[/tex] is closer to [tex]\( A \)[/tex] than [tex]\( B \)[/tex], covering 3 parts out of the total 7 parts of the segment.
3. Finding the Distance Covered by the Fraction:
- Compute the distance from [tex]\( A \)[/tex] to [tex]\( B \)[/tex]: since [tex]\( B - A = 2 - (-6) = 8 \)[/tex].
- The scaled distance for point [tex]\( C \)[/tex] using the fraction [tex]\( \frac{3}{7} \)[/tex] is calculated as [tex]\( \frac{3}{7} \times 8 = 3.4285714285714284 \)[/tex].
4. Determining the Position of Point [tex]\( C \)[/tex]:
- To find [tex]\( C \)[/tex], start at [tex]\( A \)[/tex] and move the scaled distance towards [tex]\( B \)[/tex]:
- Thus, point [tex]\( C \)[/tex] is located at [tex]\( A + \text{(fraction of the distance)} \)[/tex], which is [tex]\( -6 + \frac{3}{7} \times 8 \)[/tex].
- This simplifies to:
[tex]\[ -6 + 3.4285714285714284 = -2.5714285714285716 \][/tex]
Therefore, point [tex]\( C \)[/tex] is at approximately [tex]\(-2.57\)[/tex].
Analysis of the Student's Work:
- The student mistakenly used [tex]\( \frac{3}{4} \)[/tex] instead of [tex]\( \frac{3}{7} \)[/tex].
- Correcting the student's fractions and calculations reveals the accurate placement of [tex]\( C \)[/tex].
Thus, the student's approach is incorrect and the accurate calculations show that point [tex]\( C \)[/tex] is [tex]\( -2.57 \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.