Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find [tex]\(\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\)[/tex] for the function [tex]\(f(x) = -2x - 1\)[/tex] at [tex]\(x = 6\)[/tex], we follow these steps:
1. Determine [tex]\(f(x+h)\)[/tex]:
Given [tex]\(f(x) = -2x - 1\)[/tex], we substitute [tex]\(x + h\)[/tex] into the function:
[tex]\[ f(x+h) = -2(x+h) - 1 \][/tex]
Simplifying this, we get:
[tex]\[ f(x+h) = -2x - 2h - 1 \][/tex]
2. Find the difference [tex]\(f(x+h) - f(x)\)[/tex]:
We already have [tex]\(f(x) = -2x - 1\)[/tex] and [tex]\(f(x+h) = -2x - 2h - 1\)[/tex]. Now, we calculate:
[tex]\[ f(x+h) - f(x) = (-2x - 2h - 1) - (-2x - 1) \][/tex]
Simplifying this, we get:
[tex]\[ f(x+h) - f(x) = -2x - 2h - 1 + 2x + 1 \][/tex]
[tex]\[ f(x+h) - f(x) = -2h \][/tex]
3. Form the difference quotient [tex]\(\frac{f(x+h) - f(x)}{h}\)[/tex]:
We now put our result into the difference quotient:
[tex]\[ \frac{f(x+h) - f(x)}{h} = \frac{-2h}{h} \][/tex]
Simplifying this, we get:
[tex]\[ \frac{f(x+h) - f(x)}{h} = -2 \][/tex]
4. Take the limit as [tex]\(h \to 0\)[/tex]:
Since the quotient [tex]\(-2\)[/tex] does not depend on [tex]\(h\)[/tex] (it is constant), the limit is:
[tex]\[ \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = -2 \][/tex]
Therefore, the limit [tex]\(\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\)[/tex] for the given function [tex]\(f(x) = -2x - 1\)[/tex] at [tex]\(x = 6\)[/tex] is [tex]\(-2\)[/tex].
1. Determine [tex]\(f(x+h)\)[/tex]:
Given [tex]\(f(x) = -2x - 1\)[/tex], we substitute [tex]\(x + h\)[/tex] into the function:
[tex]\[ f(x+h) = -2(x+h) - 1 \][/tex]
Simplifying this, we get:
[tex]\[ f(x+h) = -2x - 2h - 1 \][/tex]
2. Find the difference [tex]\(f(x+h) - f(x)\)[/tex]:
We already have [tex]\(f(x) = -2x - 1\)[/tex] and [tex]\(f(x+h) = -2x - 2h - 1\)[/tex]. Now, we calculate:
[tex]\[ f(x+h) - f(x) = (-2x - 2h - 1) - (-2x - 1) \][/tex]
Simplifying this, we get:
[tex]\[ f(x+h) - f(x) = -2x - 2h - 1 + 2x + 1 \][/tex]
[tex]\[ f(x+h) - f(x) = -2h \][/tex]
3. Form the difference quotient [tex]\(\frac{f(x+h) - f(x)}{h}\)[/tex]:
We now put our result into the difference quotient:
[tex]\[ \frac{f(x+h) - f(x)}{h} = \frac{-2h}{h} \][/tex]
Simplifying this, we get:
[tex]\[ \frac{f(x+h) - f(x)}{h} = -2 \][/tex]
4. Take the limit as [tex]\(h \to 0\)[/tex]:
Since the quotient [tex]\(-2\)[/tex] does not depend on [tex]\(h\)[/tex] (it is constant), the limit is:
[tex]\[ \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = -2 \][/tex]
Therefore, the limit [tex]\(\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\)[/tex] for the given function [tex]\(f(x) = -2x - 1\)[/tex] at [tex]\(x = 6\)[/tex] is [tex]\(-2\)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.