At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the axis of symmetry for the given parabola [tex]\( y = -x^2 - 2x + 6 \)[/tex], you can follow these steps:
1. Identify the coefficients of the quadratic equation: The given quadratic equation can be written in standard form [tex]\( y = ax^2 + bx + c \)[/tex], which makes it clear that:
- [tex]\( a = -1 \)[/tex]
- [tex]\( b = -2 \)[/tex]
- [tex]\( c = 6 \)[/tex]
2. Use the formula for the axis of symmetry: For a parabola given by [tex]\( y = ax^2 + bx + c \)[/tex], the axis of symmetry is given by the formula [tex]\( x = -\frac{b}{2a} \)[/tex].
3. Substitute the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into the formula:
- [tex]\( a = -1 \)[/tex]
- [tex]\( b = -2 \)[/tex]
The formula becomes:
[tex]\[ x = -\frac{-2}{2 \cdot -1} \][/tex]
4. Simplify the expression: Calculate the value inside the fraction.
[tex]\[ x = -\frac{-2}{-2} \][/tex]
5. Calculate the final value:
[tex]\[ x = -1 \][/tex]
Therefore, the axis of symmetry for the parabola [tex]\( y = -x^2 - 2x + 6 \)[/tex] is given by the equation:
[tex]\[ x = -1 \][/tex]
1. Identify the coefficients of the quadratic equation: The given quadratic equation can be written in standard form [tex]\( y = ax^2 + bx + c \)[/tex], which makes it clear that:
- [tex]\( a = -1 \)[/tex]
- [tex]\( b = -2 \)[/tex]
- [tex]\( c = 6 \)[/tex]
2. Use the formula for the axis of symmetry: For a parabola given by [tex]\( y = ax^2 + bx + c \)[/tex], the axis of symmetry is given by the formula [tex]\( x = -\frac{b}{2a} \)[/tex].
3. Substitute the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into the formula:
- [tex]\( a = -1 \)[/tex]
- [tex]\( b = -2 \)[/tex]
The formula becomes:
[tex]\[ x = -\frac{-2}{2 \cdot -1} \][/tex]
4. Simplify the expression: Calculate the value inside the fraction.
[tex]\[ x = -\frac{-2}{-2} \][/tex]
5. Calculate the final value:
[tex]\[ x = -1 \][/tex]
Therefore, the axis of symmetry for the parabola [tex]\( y = -x^2 - 2x + 6 \)[/tex] is given by the equation:
[tex]\[ x = -1 \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.