At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the axis of symmetry for the given parabola [tex]\( y = -x^2 - 2x + 6 \)[/tex], you can follow these steps:
1. Identify the coefficients of the quadratic equation: The given quadratic equation can be written in standard form [tex]\( y = ax^2 + bx + c \)[/tex], which makes it clear that:
- [tex]\( a = -1 \)[/tex]
- [tex]\( b = -2 \)[/tex]
- [tex]\( c = 6 \)[/tex]
2. Use the formula for the axis of symmetry: For a parabola given by [tex]\( y = ax^2 + bx + c \)[/tex], the axis of symmetry is given by the formula [tex]\( x = -\frac{b}{2a} \)[/tex].
3. Substitute the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into the formula:
- [tex]\( a = -1 \)[/tex]
- [tex]\( b = -2 \)[/tex]
The formula becomes:
[tex]\[ x = -\frac{-2}{2 \cdot -1} \][/tex]
4. Simplify the expression: Calculate the value inside the fraction.
[tex]\[ x = -\frac{-2}{-2} \][/tex]
5. Calculate the final value:
[tex]\[ x = -1 \][/tex]
Therefore, the axis of symmetry for the parabola [tex]\( y = -x^2 - 2x + 6 \)[/tex] is given by the equation:
[tex]\[ x = -1 \][/tex]
1. Identify the coefficients of the quadratic equation: The given quadratic equation can be written in standard form [tex]\( y = ax^2 + bx + c \)[/tex], which makes it clear that:
- [tex]\( a = -1 \)[/tex]
- [tex]\( b = -2 \)[/tex]
- [tex]\( c = 6 \)[/tex]
2. Use the formula for the axis of symmetry: For a parabola given by [tex]\( y = ax^2 + bx + c \)[/tex], the axis of symmetry is given by the formula [tex]\( x = -\frac{b}{2a} \)[/tex].
3. Substitute the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into the formula:
- [tex]\( a = -1 \)[/tex]
- [tex]\( b = -2 \)[/tex]
The formula becomes:
[tex]\[ x = -\frac{-2}{2 \cdot -1} \][/tex]
4. Simplify the expression: Calculate the value inside the fraction.
[tex]\[ x = -\frac{-2}{-2} \][/tex]
5. Calculate the final value:
[tex]\[ x = -1 \][/tex]
Therefore, the axis of symmetry for the parabola [tex]\( y = -x^2 - 2x + 6 \)[/tex] is given by the equation:
[tex]\[ x = -1 \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.