Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which point is a solution to the given system of inequalities, we will evaluate each point against both inequalities:
[tex]\[ \begin{cases} -2x + 3y \geq 1 \\ -5x + 6y \leq 1 \end{cases} \][/tex]
Let's check each point one-by-one:
1. Point (6, 6):
For the first inequality, substitute [tex]\( x = 6 \)[/tex] and [tex]\( y = 6 \)[/tex]:
[tex]\[ -2(6) + 3(6) = -12 + 18 = 6 \quad (\text{which is } \geq 1) \][/tex]
This point satisfies the first inequality.
For the second inequality, substitute [tex]\( x = 6 \)[/tex] and [tex]\( y = 6 \)[/tex]:
[tex]\[ -5(6) + 6(6) = -30 + 36 = 6 \quad (\text{which is not } \leq 1) \][/tex]
This point does not satisfy the second inequality.
2. Point (7, 8):
For the first inequality, substitute [tex]\( x = 7 \)[/tex] and [tex]\( y = 8 \)[/tex]:
[tex]\[ -2(7) + 3(8) = -14 + 24 = 10 \quad (\text{which is } \geq 1) \][/tex]
This point satisfies the first inequality.
For the second inequality, substitute [tex]\( x = 7 \)[/tex] and [tex]\( y = 8 \)[/tex]:
[tex]\[ -5(7) + 6(8) = -35 + 48 = 13 \quad (\text{which is not } \leq 1) \][/tex]
This point does not satisfy the second inequality.
3. Point (8, 7):
For the first inequality, substitute [tex]\( x = 8 \)[/tex] and [tex]\( y = 7 \)[/tex]:
[tex]\[ -2(8) + 3(7) = -16 + 21 = 5 \quad (\text{which is } \geq 1) \][/tex]
This point satisfies the first inequality.
For the second inequality, substitute [tex]\( x = 8 \)[/tex] and [tex]\( y = 7 \)[/tex]:
[tex]\[ -5(8) + 6(7) = -40 + 42 = 2 \quad (\text{which is not } \leq 1) \][/tex]
This point does not satisfy the second inequality.
4. Point (9, 7):
For the first inequality, substitute [tex]\( x = 9 \)[/tex] and [tex]\( y = 7 \)[/tex]:
[tex]\[ -2(9) + 3(7) = -18 + 21 = 3 \quad (\text{which is } \geq 1) \][/tex]
This point satisfies the first inequality.
For the second inequality, substitute [tex]\( x = 9 \)[/tex] and [tex]\( y = 7 \)[/tex]:
[tex]\[ -5(9) + 6(7) = -45 + 42 = -3 \quad (\text{which is } \leq 1) \][/tex]
This point satisfies the second inequality.
The point [tex]\((9, 7)\)[/tex] satisfies both inequalities.
Therefore, the point [tex]\((9, 7)\)[/tex] is a solution to the system of inequalities.
[tex]\[ \begin{cases} -2x + 3y \geq 1 \\ -5x + 6y \leq 1 \end{cases} \][/tex]
Let's check each point one-by-one:
1. Point (6, 6):
For the first inequality, substitute [tex]\( x = 6 \)[/tex] and [tex]\( y = 6 \)[/tex]:
[tex]\[ -2(6) + 3(6) = -12 + 18 = 6 \quad (\text{which is } \geq 1) \][/tex]
This point satisfies the first inequality.
For the second inequality, substitute [tex]\( x = 6 \)[/tex] and [tex]\( y = 6 \)[/tex]:
[tex]\[ -5(6) + 6(6) = -30 + 36 = 6 \quad (\text{which is not } \leq 1) \][/tex]
This point does not satisfy the second inequality.
2. Point (7, 8):
For the first inequality, substitute [tex]\( x = 7 \)[/tex] and [tex]\( y = 8 \)[/tex]:
[tex]\[ -2(7) + 3(8) = -14 + 24 = 10 \quad (\text{which is } \geq 1) \][/tex]
This point satisfies the first inequality.
For the second inequality, substitute [tex]\( x = 7 \)[/tex] and [tex]\( y = 8 \)[/tex]:
[tex]\[ -5(7) + 6(8) = -35 + 48 = 13 \quad (\text{which is not } \leq 1) \][/tex]
This point does not satisfy the second inequality.
3. Point (8, 7):
For the first inequality, substitute [tex]\( x = 8 \)[/tex] and [tex]\( y = 7 \)[/tex]:
[tex]\[ -2(8) + 3(7) = -16 + 21 = 5 \quad (\text{which is } \geq 1) \][/tex]
This point satisfies the first inequality.
For the second inequality, substitute [tex]\( x = 8 \)[/tex] and [tex]\( y = 7 \)[/tex]:
[tex]\[ -5(8) + 6(7) = -40 + 42 = 2 \quad (\text{which is not } \leq 1) \][/tex]
This point does not satisfy the second inequality.
4. Point (9, 7):
For the first inequality, substitute [tex]\( x = 9 \)[/tex] and [tex]\( y = 7 \)[/tex]:
[tex]\[ -2(9) + 3(7) = -18 + 21 = 3 \quad (\text{which is } \geq 1) \][/tex]
This point satisfies the first inequality.
For the second inequality, substitute [tex]\( x = 9 \)[/tex] and [tex]\( y = 7 \)[/tex]:
[tex]\[ -5(9) + 6(7) = -45 + 42 = -3 \quad (\text{which is } \leq 1) \][/tex]
This point satisfies the second inequality.
The point [tex]\((9, 7)\)[/tex] satisfies both inequalities.
Therefore, the point [tex]\((9, 7)\)[/tex] is a solution to the system of inequalities.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.