Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which point is a solution to the given system of inequalities, we will evaluate each point against both inequalities:
[tex]\[ \begin{cases} -2x + 3y \geq 1 \\ -5x + 6y \leq 1 \end{cases} \][/tex]
Let's check each point one-by-one:
1. Point (6, 6):
For the first inequality, substitute [tex]\( x = 6 \)[/tex] and [tex]\( y = 6 \)[/tex]:
[tex]\[ -2(6) + 3(6) = -12 + 18 = 6 \quad (\text{which is } \geq 1) \][/tex]
This point satisfies the first inequality.
For the second inequality, substitute [tex]\( x = 6 \)[/tex] and [tex]\( y = 6 \)[/tex]:
[tex]\[ -5(6) + 6(6) = -30 + 36 = 6 \quad (\text{which is not } \leq 1) \][/tex]
This point does not satisfy the second inequality.
2. Point (7, 8):
For the first inequality, substitute [tex]\( x = 7 \)[/tex] and [tex]\( y = 8 \)[/tex]:
[tex]\[ -2(7) + 3(8) = -14 + 24 = 10 \quad (\text{which is } \geq 1) \][/tex]
This point satisfies the first inequality.
For the second inequality, substitute [tex]\( x = 7 \)[/tex] and [tex]\( y = 8 \)[/tex]:
[tex]\[ -5(7) + 6(8) = -35 + 48 = 13 \quad (\text{which is not } \leq 1) \][/tex]
This point does not satisfy the second inequality.
3. Point (8, 7):
For the first inequality, substitute [tex]\( x = 8 \)[/tex] and [tex]\( y = 7 \)[/tex]:
[tex]\[ -2(8) + 3(7) = -16 + 21 = 5 \quad (\text{which is } \geq 1) \][/tex]
This point satisfies the first inequality.
For the second inequality, substitute [tex]\( x = 8 \)[/tex] and [tex]\( y = 7 \)[/tex]:
[tex]\[ -5(8) + 6(7) = -40 + 42 = 2 \quad (\text{which is not } \leq 1) \][/tex]
This point does not satisfy the second inequality.
4. Point (9, 7):
For the first inequality, substitute [tex]\( x = 9 \)[/tex] and [tex]\( y = 7 \)[/tex]:
[tex]\[ -2(9) + 3(7) = -18 + 21 = 3 \quad (\text{which is } \geq 1) \][/tex]
This point satisfies the first inequality.
For the second inequality, substitute [tex]\( x = 9 \)[/tex] and [tex]\( y = 7 \)[/tex]:
[tex]\[ -5(9) + 6(7) = -45 + 42 = -3 \quad (\text{which is } \leq 1) \][/tex]
This point satisfies the second inequality.
The point [tex]\((9, 7)\)[/tex] satisfies both inequalities.
Therefore, the point [tex]\((9, 7)\)[/tex] is a solution to the system of inequalities.
[tex]\[ \begin{cases} -2x + 3y \geq 1 \\ -5x + 6y \leq 1 \end{cases} \][/tex]
Let's check each point one-by-one:
1. Point (6, 6):
For the first inequality, substitute [tex]\( x = 6 \)[/tex] and [tex]\( y = 6 \)[/tex]:
[tex]\[ -2(6) + 3(6) = -12 + 18 = 6 \quad (\text{which is } \geq 1) \][/tex]
This point satisfies the first inequality.
For the second inequality, substitute [tex]\( x = 6 \)[/tex] and [tex]\( y = 6 \)[/tex]:
[tex]\[ -5(6) + 6(6) = -30 + 36 = 6 \quad (\text{which is not } \leq 1) \][/tex]
This point does not satisfy the second inequality.
2. Point (7, 8):
For the first inequality, substitute [tex]\( x = 7 \)[/tex] and [tex]\( y = 8 \)[/tex]:
[tex]\[ -2(7) + 3(8) = -14 + 24 = 10 \quad (\text{which is } \geq 1) \][/tex]
This point satisfies the first inequality.
For the second inequality, substitute [tex]\( x = 7 \)[/tex] and [tex]\( y = 8 \)[/tex]:
[tex]\[ -5(7) + 6(8) = -35 + 48 = 13 \quad (\text{which is not } \leq 1) \][/tex]
This point does not satisfy the second inequality.
3. Point (8, 7):
For the first inequality, substitute [tex]\( x = 8 \)[/tex] and [tex]\( y = 7 \)[/tex]:
[tex]\[ -2(8) + 3(7) = -16 + 21 = 5 \quad (\text{which is } \geq 1) \][/tex]
This point satisfies the first inequality.
For the second inequality, substitute [tex]\( x = 8 \)[/tex] and [tex]\( y = 7 \)[/tex]:
[tex]\[ -5(8) + 6(7) = -40 + 42 = 2 \quad (\text{which is not } \leq 1) \][/tex]
This point does not satisfy the second inequality.
4. Point (9, 7):
For the first inequality, substitute [tex]\( x = 9 \)[/tex] and [tex]\( y = 7 \)[/tex]:
[tex]\[ -2(9) + 3(7) = -18 + 21 = 3 \quad (\text{which is } \geq 1) \][/tex]
This point satisfies the first inequality.
For the second inequality, substitute [tex]\( x = 9 \)[/tex] and [tex]\( y = 7 \)[/tex]:
[tex]\[ -5(9) + 6(7) = -45 + 42 = -3 \quad (\text{which is } \leq 1) \][/tex]
This point satisfies the second inequality.
The point [tex]\((9, 7)\)[/tex] satisfies both inequalities.
Therefore, the point [tex]\((9, 7)\)[/tex] is a solution to the system of inequalities.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.