Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's solve the given problem step by step.
### Given Data:
- Principal ([tex]\( P \)[/tex]): [tex]$8000 - Annual Interest Rate (\( r \)): 4% or 0.04 (in decimal form) - Number of times the interest is compounded per year (\( n \)): 12 (monthly) - Time (\( t \)): 1 year ### Part A: Find how much money there will be in the account after the given number of years \( t = 1 \). First, we use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{n t} \] Substitute the values into the formula: \[ A = 8000 \left(1 + \frac{0.04}{12}\right)^{12 \times 1} \] Now calculate the amount: \[ A = 8000 \left(1 + 0.0033333\right)^{12} \] \[ A = 8000 (1.0033333)^{12} \] \[ A = 8000 \cdot 1.040813 \] \[ A = 8325.93 \] So, the amount of money in the account after 1 year is \$[/tex]8325.93.
### Part B: Find the interest earned.
The interest earned can be calculated by subtracting the principal from the total amount after 1 year.
[tex]\[ \text{Interest Earned} = A - P \][/tex]
Substitute the values:
[tex]\[ \text{Interest Earned} = 8325.93 - 8000 \][/tex]
[tex]\[ \text{Interest Earned} = 325.93 \][/tex]
So, the amount of interest earned is \[tex]$325.93. ### Summary: A. The amount of money in the account after 1 year is \$[/tex]8325.93.\
B. The amount of interest earned is \$325.93.
### Given Data:
- Principal ([tex]\( P \)[/tex]): [tex]$8000 - Annual Interest Rate (\( r \)): 4% or 0.04 (in decimal form) - Number of times the interest is compounded per year (\( n \)): 12 (monthly) - Time (\( t \)): 1 year ### Part A: Find how much money there will be in the account after the given number of years \( t = 1 \). First, we use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{n t} \] Substitute the values into the formula: \[ A = 8000 \left(1 + \frac{0.04}{12}\right)^{12 \times 1} \] Now calculate the amount: \[ A = 8000 \left(1 + 0.0033333\right)^{12} \] \[ A = 8000 (1.0033333)^{12} \] \[ A = 8000 \cdot 1.040813 \] \[ A = 8325.93 \] So, the amount of money in the account after 1 year is \$[/tex]8325.93.
### Part B: Find the interest earned.
The interest earned can be calculated by subtracting the principal from the total amount after 1 year.
[tex]\[ \text{Interest Earned} = A - P \][/tex]
Substitute the values:
[tex]\[ \text{Interest Earned} = 8325.93 - 8000 \][/tex]
[tex]\[ \text{Interest Earned} = 325.93 \][/tex]
So, the amount of interest earned is \[tex]$325.93. ### Summary: A. The amount of money in the account after 1 year is \$[/tex]8325.93.\
B. The amount of interest earned is \$325.93.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.