Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

The domain of the piecewise function is [tex]\( (-\infty, \infty) \)[/tex].

a. Graph the function.
b. Use your graph to determine the function's range.

[tex]\[ f(x) = \begin{cases}
\frac{1}{4} x^2 & \text{if } x \ \textless \ 4 \\
4x - 10 & \text{if } x \geq 4
\end{cases} \][/tex]


Sagot :

Sure! Let's analyze and solve this problem step-by-step.

### a. Graph the Function

We are given a piecewise function [tex]\( f(x) \)[/tex]:

[tex]\[ f(x) = \begin{cases} \frac{1}{4} x^2 & \text{if } x < 4 \\ 4x - 10 & \text{if } x \geq 4 \end{cases} \][/tex]

To graph the function, let's consider the two parts of the piecewise function separately:

1. For [tex]\( x < 4 \)[/tex]:
The function is [tex]\( f(x) = \frac{1}{4} x^2 \)[/tex], which is a quadratic function opening upwards.

2. For [tex]\( x \geq 4 \)[/tex]:
The function is [tex]\( f(x) = 4x - 10 \)[/tex], which is a linear function with a slope of 4 and a y-intercept of -10.

Let's find the point at which these two parts meet:

- When [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = \frac{1}{4} 4^2 = 4 \][/tex]
[tex]\[ f(4) = 4
4 - 10 = 6 \][/tex]

Since we have the boundary case [tex]\( x = 4 \)[/tex], the correct value at [tex]\( x = 4 \)[/tex] should be taken from the second part of the function, which serves [tex]\( x \geq 4 \)[/tex]. Hence, at [tex]\( x = 4 \)[/tex],
[tex]\[ f(4) = 6 \][/tex]

Now, we can plot the two parts:
- The quadratic function [tex]\( \frac{1}{4} x^2 \)[/tex] for [tex]\( x < 4 \)[/tex]
- The linear function [tex]\( 4x - 10 \)[/tex] for [tex]\( x \geq 4 \)[/tex]

### b. Determine the Function's Range

To determine the range of this piecewise function using the graph, we need to understand the value [tex]\( f(x) \)[/tex] takes for all possible [tex]\( x \)[/tex].

1. For [tex]\( x < 4 \)[/tex]:
- As [tex]\( x \)[/tex] approaches negative infinity ([tex]\( -\infty \)[/tex]), [tex]\( f(x) \)[/tex] approaches infinity ([tex]\( +\infty \)[/tex]) because of the [tex]\( \frac{1}{4} x^2 \)[/tex] quadratic term.
- At [tex]\( x = 0 \)[/tex], [tex]\( f(0) = \frac{1}{4} * 0^2 = 0 \)[/tex].

2. For [tex]\( x \geq 4 \)[/tex]:
- The value immediately at [tex]\( x = 4 \)[/tex] is calculated from the second piece, so [tex]\( f(4) = 6 \)[/tex].
- As [tex]\( x \)[/tex] increases beyond 4, since [tex]\( 4x - 10 \)[/tex] is a linear function with a positive slope, [tex]\( f(x) \)[/tex] will continue increasing without bound.

From these observations, we can see:
- The lowest value of the function occurs at [tex]\( x = 0 \)[/tex] with [tex]\( f(0) = 0 \)[/tex].
- The function increases in both directions from zero to [tex]\( +\infty \)[/tex].

Therefore, the range of the function [tex]\( f(x) \)[/tex] is:
[tex]\[ [0, \infty) \][/tex]

Here is a summary of the findings:
- The function value starts at 0 and increases to positive infinity.
- The range of [tex]\( f(x) \)[/tex]: [tex]\( [0, \infty) \)[/tex].