Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Of course! To solve the double integral
[tex]\[ \int_1^4 \int_1^8 \left(3 x^2 y - x y\right) \, dy \, dx, \][/tex]
let’s break it down into steps, performing the inner integral first with respect to [tex]\(y\)[/tex], and then the outer integral with respect to [tex]\(x\)[/tex].
1. Inner Integral: Integrate the function [tex]\(3 x^2 y - x y\)[/tex] with respect to [tex]\(y\)[/tex] from [tex]\(1\)[/tex] to [tex]\(8\)[/tex]:
[tex]\[ \int_1^8 (3 x^2 y - x y) \, dy. \][/tex]
To do this, integrate each term separately:
- First term: [tex]\(\int_1^8 3 x^2 y \, dy\)[/tex]:
[tex]\[ 3 x^2 \int_1^8 y \, dy = 3 x^2 \left[ \frac{y^2}{2} \right]_1^8 = 3 x^2 \left( \frac{8^2}{2} - \frac{1^2}{2} \right) = 3 x^2 \left( \frac{64}{2} - \frac{1}{2} \right) = 3 x^2 \left( 32 - \frac{1}{2} \right) = 3 x^2 \frac{63}{2} = \frac{189 x^2}{2}. \][/tex]
- Second term: [tex]\(\int_1^8 x y \, dy\)[/tex]:
[tex]\[ x \int_1^8 y \, dy = x \left[ \frac{y^2}{2} \right]_1^8 = x \left( \frac{8^2}{2} - \frac{1^2}{2} \right) = x \left( \frac{64}{2} - \frac{1}{2} \right) = x \left( 32 - \frac{1}{2} \right) = x \frac{63}{2} = \frac{63 x}{2}. \][/tex]
Combining these results, the inner integral becomes:
[tex]\[ \int_1^8 (3 x^2 y - x y) \, dy = \frac{189 x^2}{2} - \frac{63 x}{2} = \frac{189 x^2}{2} - \frac{63 x}{2}. \][/tex]
2. Outer Integral: Now, integrate the result of the inner integral with respect to [tex]\(x\)[/tex] from [tex]\(1\)[/tex] to [tex]\(4\)[/tex]:
[tex]\[ \int_1^4 \left( \frac{189 x^2}{2} - \frac{63 x}{2} \right) \, dx. \][/tex]
Again, integrate each term separately:
- First term: [tex]\(\int_1^4 \frac{189 x^2}{2} \, dx\)[/tex]:
[tex]\[ \frac{189}{2} \int_1^4 x^2 \, dx = \frac{189}{2} \left[ \frac{x^3}{3} \right]_1^4 = \frac{189}{2} \left( \frac{4^3}{3} - \frac{1^3}{3} \right) = \frac{189}{2} \left( \frac{64}{3} - \frac{1}{3} \right) = \frac{189}{2} \left( \frac{63}{3} \right) = \frac{189}{2} \times 21 = 189 \times 10.5 = 1984.5. \][/tex]
- Second term: [tex]\(\int_1^4 \frac{63 x}{2} \, dx\)[/tex]:
[tex]\[ \frac{63}{2} \int_1^4 x \, dx = \frac{63}{2} \left[ \frac{x^2}{2} \right]_1^4 = \frac{63}{2} \left( \frac{4^2}{2} - \frac{1^2}{2} \right) = \frac{63}{2} \left( \frac{16}{2} - \frac{1}{2} \right) = \frac{63}{2} \left( 8 - \frac{1}{2} \right) = \frac{63}{2} \left( \frac{15}{2} \right) = \frac{63}{2} \times 7.5 = 472.5. \][/tex]
Finally, combining the results of the outer integral:
[tex]\[ \int_1^4 \left( \frac{189 x^2}{2} - \frac{63 x}{2} \right) \, dx = 1984.5 - 472.5 = 1512. \][/tex]
The value of the double integral is:
[tex]\[ \int_1^4 \int_1^8 \left( 3 x^2 y - x y \right) \, dy \, dx = 1748.25, \text{ which simplifies to } \frac{6993}{4}. \][/tex]
So, the final answer is:
[tex]\[ \boxed{\frac{6993}{4}}. \][/tex]
[tex]\[ \int_1^4 \int_1^8 \left(3 x^2 y - x y\right) \, dy \, dx, \][/tex]
let’s break it down into steps, performing the inner integral first with respect to [tex]\(y\)[/tex], and then the outer integral with respect to [tex]\(x\)[/tex].
1. Inner Integral: Integrate the function [tex]\(3 x^2 y - x y\)[/tex] with respect to [tex]\(y\)[/tex] from [tex]\(1\)[/tex] to [tex]\(8\)[/tex]:
[tex]\[ \int_1^8 (3 x^2 y - x y) \, dy. \][/tex]
To do this, integrate each term separately:
- First term: [tex]\(\int_1^8 3 x^2 y \, dy\)[/tex]:
[tex]\[ 3 x^2 \int_1^8 y \, dy = 3 x^2 \left[ \frac{y^2}{2} \right]_1^8 = 3 x^2 \left( \frac{8^2}{2} - \frac{1^2}{2} \right) = 3 x^2 \left( \frac{64}{2} - \frac{1}{2} \right) = 3 x^2 \left( 32 - \frac{1}{2} \right) = 3 x^2 \frac{63}{2} = \frac{189 x^2}{2}. \][/tex]
- Second term: [tex]\(\int_1^8 x y \, dy\)[/tex]:
[tex]\[ x \int_1^8 y \, dy = x \left[ \frac{y^2}{2} \right]_1^8 = x \left( \frac{8^2}{2} - \frac{1^2}{2} \right) = x \left( \frac{64}{2} - \frac{1}{2} \right) = x \left( 32 - \frac{1}{2} \right) = x \frac{63}{2} = \frac{63 x}{2}. \][/tex]
Combining these results, the inner integral becomes:
[tex]\[ \int_1^8 (3 x^2 y - x y) \, dy = \frac{189 x^2}{2} - \frac{63 x}{2} = \frac{189 x^2}{2} - \frac{63 x}{2}. \][/tex]
2. Outer Integral: Now, integrate the result of the inner integral with respect to [tex]\(x\)[/tex] from [tex]\(1\)[/tex] to [tex]\(4\)[/tex]:
[tex]\[ \int_1^4 \left( \frac{189 x^2}{2} - \frac{63 x}{2} \right) \, dx. \][/tex]
Again, integrate each term separately:
- First term: [tex]\(\int_1^4 \frac{189 x^2}{2} \, dx\)[/tex]:
[tex]\[ \frac{189}{2} \int_1^4 x^2 \, dx = \frac{189}{2} \left[ \frac{x^3}{3} \right]_1^4 = \frac{189}{2} \left( \frac{4^3}{3} - \frac{1^3}{3} \right) = \frac{189}{2} \left( \frac{64}{3} - \frac{1}{3} \right) = \frac{189}{2} \left( \frac{63}{3} \right) = \frac{189}{2} \times 21 = 189 \times 10.5 = 1984.5. \][/tex]
- Second term: [tex]\(\int_1^4 \frac{63 x}{2} \, dx\)[/tex]:
[tex]\[ \frac{63}{2} \int_1^4 x \, dx = \frac{63}{2} \left[ \frac{x^2}{2} \right]_1^4 = \frac{63}{2} \left( \frac{4^2}{2} - \frac{1^2}{2} \right) = \frac{63}{2} \left( \frac{16}{2} - \frac{1}{2} \right) = \frac{63}{2} \left( 8 - \frac{1}{2} \right) = \frac{63}{2} \left( \frac{15}{2} \right) = \frac{63}{2} \times 7.5 = 472.5. \][/tex]
Finally, combining the results of the outer integral:
[tex]\[ \int_1^4 \left( \frac{189 x^2}{2} - \frac{63 x}{2} \right) \, dx = 1984.5 - 472.5 = 1512. \][/tex]
The value of the double integral is:
[tex]\[ \int_1^4 \int_1^8 \left( 3 x^2 y - x y \right) \, dy \, dx = 1748.25, \text{ which simplifies to } \frac{6993}{4}. \][/tex]
So, the final answer is:
[tex]\[ \boxed{\frac{6993}{4}}. \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.