Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Of course! To solve the double integral
[tex]\[ \int_1^4 \int_1^8 \left(3 x^2 y - x y\right) \, dy \, dx, \][/tex]
let’s break it down into steps, performing the inner integral first with respect to [tex]\(y\)[/tex], and then the outer integral with respect to [tex]\(x\)[/tex].
1. Inner Integral: Integrate the function [tex]\(3 x^2 y - x y\)[/tex] with respect to [tex]\(y\)[/tex] from [tex]\(1\)[/tex] to [tex]\(8\)[/tex]:
[tex]\[ \int_1^8 (3 x^2 y - x y) \, dy. \][/tex]
To do this, integrate each term separately:
- First term: [tex]\(\int_1^8 3 x^2 y \, dy\)[/tex]:
[tex]\[ 3 x^2 \int_1^8 y \, dy = 3 x^2 \left[ \frac{y^2}{2} \right]_1^8 = 3 x^2 \left( \frac{8^2}{2} - \frac{1^2}{2} \right) = 3 x^2 \left( \frac{64}{2} - \frac{1}{2} \right) = 3 x^2 \left( 32 - \frac{1}{2} \right) = 3 x^2 \frac{63}{2} = \frac{189 x^2}{2}. \][/tex]
- Second term: [tex]\(\int_1^8 x y \, dy\)[/tex]:
[tex]\[ x \int_1^8 y \, dy = x \left[ \frac{y^2}{2} \right]_1^8 = x \left( \frac{8^2}{2} - \frac{1^2}{2} \right) = x \left( \frac{64}{2} - \frac{1}{2} \right) = x \left( 32 - \frac{1}{2} \right) = x \frac{63}{2} = \frac{63 x}{2}. \][/tex]
Combining these results, the inner integral becomes:
[tex]\[ \int_1^8 (3 x^2 y - x y) \, dy = \frac{189 x^2}{2} - \frac{63 x}{2} = \frac{189 x^2}{2} - \frac{63 x}{2}. \][/tex]
2. Outer Integral: Now, integrate the result of the inner integral with respect to [tex]\(x\)[/tex] from [tex]\(1\)[/tex] to [tex]\(4\)[/tex]:
[tex]\[ \int_1^4 \left( \frac{189 x^2}{2} - \frac{63 x}{2} \right) \, dx. \][/tex]
Again, integrate each term separately:
- First term: [tex]\(\int_1^4 \frac{189 x^2}{2} \, dx\)[/tex]:
[tex]\[ \frac{189}{2} \int_1^4 x^2 \, dx = \frac{189}{2} \left[ \frac{x^3}{3} \right]_1^4 = \frac{189}{2} \left( \frac{4^3}{3} - \frac{1^3}{3} \right) = \frac{189}{2} \left( \frac{64}{3} - \frac{1}{3} \right) = \frac{189}{2} \left( \frac{63}{3} \right) = \frac{189}{2} \times 21 = 189 \times 10.5 = 1984.5. \][/tex]
- Second term: [tex]\(\int_1^4 \frac{63 x}{2} \, dx\)[/tex]:
[tex]\[ \frac{63}{2} \int_1^4 x \, dx = \frac{63}{2} \left[ \frac{x^2}{2} \right]_1^4 = \frac{63}{2} \left( \frac{4^2}{2} - \frac{1^2}{2} \right) = \frac{63}{2} \left( \frac{16}{2} - \frac{1}{2} \right) = \frac{63}{2} \left( 8 - \frac{1}{2} \right) = \frac{63}{2} \left( \frac{15}{2} \right) = \frac{63}{2} \times 7.5 = 472.5. \][/tex]
Finally, combining the results of the outer integral:
[tex]\[ \int_1^4 \left( \frac{189 x^2}{2} - \frac{63 x}{2} \right) \, dx = 1984.5 - 472.5 = 1512. \][/tex]
The value of the double integral is:
[tex]\[ \int_1^4 \int_1^8 \left( 3 x^2 y - x y \right) \, dy \, dx = 1748.25, \text{ which simplifies to } \frac{6993}{4}. \][/tex]
So, the final answer is:
[tex]\[ \boxed{\frac{6993}{4}}. \][/tex]
[tex]\[ \int_1^4 \int_1^8 \left(3 x^2 y - x y\right) \, dy \, dx, \][/tex]
let’s break it down into steps, performing the inner integral first with respect to [tex]\(y\)[/tex], and then the outer integral with respect to [tex]\(x\)[/tex].
1. Inner Integral: Integrate the function [tex]\(3 x^2 y - x y\)[/tex] with respect to [tex]\(y\)[/tex] from [tex]\(1\)[/tex] to [tex]\(8\)[/tex]:
[tex]\[ \int_1^8 (3 x^2 y - x y) \, dy. \][/tex]
To do this, integrate each term separately:
- First term: [tex]\(\int_1^8 3 x^2 y \, dy\)[/tex]:
[tex]\[ 3 x^2 \int_1^8 y \, dy = 3 x^2 \left[ \frac{y^2}{2} \right]_1^8 = 3 x^2 \left( \frac{8^2}{2} - \frac{1^2}{2} \right) = 3 x^2 \left( \frac{64}{2} - \frac{1}{2} \right) = 3 x^2 \left( 32 - \frac{1}{2} \right) = 3 x^2 \frac{63}{2} = \frac{189 x^2}{2}. \][/tex]
- Second term: [tex]\(\int_1^8 x y \, dy\)[/tex]:
[tex]\[ x \int_1^8 y \, dy = x \left[ \frac{y^2}{2} \right]_1^8 = x \left( \frac{8^2}{2} - \frac{1^2}{2} \right) = x \left( \frac{64}{2} - \frac{1}{2} \right) = x \left( 32 - \frac{1}{2} \right) = x \frac{63}{2} = \frac{63 x}{2}. \][/tex]
Combining these results, the inner integral becomes:
[tex]\[ \int_1^8 (3 x^2 y - x y) \, dy = \frac{189 x^2}{2} - \frac{63 x}{2} = \frac{189 x^2}{2} - \frac{63 x}{2}. \][/tex]
2. Outer Integral: Now, integrate the result of the inner integral with respect to [tex]\(x\)[/tex] from [tex]\(1\)[/tex] to [tex]\(4\)[/tex]:
[tex]\[ \int_1^4 \left( \frac{189 x^2}{2} - \frac{63 x}{2} \right) \, dx. \][/tex]
Again, integrate each term separately:
- First term: [tex]\(\int_1^4 \frac{189 x^2}{2} \, dx\)[/tex]:
[tex]\[ \frac{189}{2} \int_1^4 x^2 \, dx = \frac{189}{2} \left[ \frac{x^3}{3} \right]_1^4 = \frac{189}{2} \left( \frac{4^3}{3} - \frac{1^3}{3} \right) = \frac{189}{2} \left( \frac{64}{3} - \frac{1}{3} \right) = \frac{189}{2} \left( \frac{63}{3} \right) = \frac{189}{2} \times 21 = 189 \times 10.5 = 1984.5. \][/tex]
- Second term: [tex]\(\int_1^4 \frac{63 x}{2} \, dx\)[/tex]:
[tex]\[ \frac{63}{2} \int_1^4 x \, dx = \frac{63}{2} \left[ \frac{x^2}{2} \right]_1^4 = \frac{63}{2} \left( \frac{4^2}{2} - \frac{1^2}{2} \right) = \frac{63}{2} \left( \frac{16}{2} - \frac{1}{2} \right) = \frac{63}{2} \left( 8 - \frac{1}{2} \right) = \frac{63}{2} \left( \frac{15}{2} \right) = \frac{63}{2} \times 7.5 = 472.5. \][/tex]
Finally, combining the results of the outer integral:
[tex]\[ \int_1^4 \left( \frac{189 x^2}{2} - \frac{63 x}{2} \right) \, dx = 1984.5 - 472.5 = 1512. \][/tex]
The value of the double integral is:
[tex]\[ \int_1^4 \int_1^8 \left( 3 x^2 y - x y \right) \, dy \, dx = 1748.25, \text{ which simplifies to } \frac{6993}{4}. \][/tex]
So, the final answer is:
[tex]\[ \boxed{\frac{6993}{4}}. \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.