Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Claro, vamos a detallar paso a paso cómo resolver este problema:
### Paso a paso:
Dado:
- Eqilibrio químico:
[tex]\[ H_2(g) + I_2(g) \leftrightarrow 2HI(g) \][/tex]
- Se introducen 0,5 moles de [tex]$H_2$[/tex] y 0,5 moles de [tex]$I_2$[/tex] en un recipiente de 1L.
- La constante de equilibrio, [tex]$K_c$[/tex], es 54,3 a [tex]$430^{\circ}C$[/tex].
Objetivo:
a) Escribir la expresión de [tex]$K_c$[/tex] para esta reacción.
b) Determinar las concentraciones de [tex]$H_2$[/tex], [tex]$I_2$[/tex] y [tex]$HI$[/tex] en el equilibrio.
c) Determinar [tex]$K_p$[/tex].
### a) Expresión de [tex]\( K_c \)[/tex]
La constante de equilibrio [tex]$K_c$[/tex] para una reacción general:
[tex]\[ aA + bB \leftrightarrow cC + dD \][/tex]
se escribe como:
[tex]\[ K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b} \][/tex]
Para la reacción dada:
[tex]\[ H_2(g) + I_2(g) \leftrightarrow 2HI(g) \][/tex]
La expresión de [tex]\( K_c \)[/tex] es:
[tex]\[ K_c = \frac{[HI]^2}{[H_2][I_2]} \][/tex]
### b) Determinar las concentraciones en equilibrio
Partimos con:
[tex]\[ [H_2]_0 = 0.5 \, \text{M} \][/tex]
[tex]\[ [I_2]_0 = 0.5 \, \text{M} \][/tex]
[tex]\[ [HI]_0 = 0 \, \text{M} \][/tex]
Si [tex]\(x\)[/tex] moles de [tex]$H_2$[/tex] e [tex]$I_2$[/tex] reaccionan, la concentración en el equilibrio será:
[tex]\[ [H_2] = [I_2] = 0.5 - x \][/tex]
[tex]\[ [HI] = 2x \][/tex]
Sustituimos en la expresión de [tex]\( K_c \)[/tex]:
[tex]\[ K_c = 54.3 = \frac{(2x)^2}{(0.5 - x)(0.5 - x)} \][/tex]
Resolvemos la ecuación cuadrática:
[tex]\[ 54.3 = \frac{4x^2}{(0.5 - x)^2} \][/tex]
Tomando la raíz cuadrada en ambos lados:
[tex]\[ \sqrt{54.3} = \frac{2x}{0.5 - x} \][/tex]
[tex]\[ \sqrt{54.3} (0.5 - x) = 2x \][/tex]
Reorganizamos para resolver para [tex]\(x\)[/tex]:
[tex]\[ \sqrt{54.3} \cdot 0.5 - \sqrt{54.3} \cdot x = 2x \][/tex]
[tex]\[ 0.5\sqrt{54.3} = (\sqrt{54.3} + 2)x \][/tex]
[tex]\[ x = \frac{0.5\sqrt{54.3}}{\sqrt{54.3} + 2} \][/tex]
Calculamos [tex]\(x\)[/tex]:
[tex]\[ \sqrt{54.3} \approx 7.37 \][/tex]
[tex]\[ x = \frac{0.5 \cdot 7.37}{7.37 + 2} \approx \frac{3.685}{9.37} \approx 0.393 \][/tex]
Entonces:
[tex]\[ [H_2] = 0.5 - x \approx 0.5 - 0.393 \approx 0.107 \, \text{M} \][/tex]
[tex]\[ [I_2] = 0.5 - x \approx 0.107 \, \text{M} \][/tex]
[tex]\[ [HI] = 2x \approx 2 \cdot 0.393 \approx 0.786 \, \text{M} \][/tex]
### c) Determinar [tex]\( K_p \)[/tex]
Para una reacción en fase gaseosa:
[tex]\[ K_p = K_c (RT)^{\Delta n} \][/tex]
Donde [tex]\( \Delta n \)[/tex] es el cambio en el número de moles de gas (productos - reactivos):
[tex]\[ \Delta n = 2 - 1 - 1 = 0 \][/tex]
A una temperatura dada [tex]\( T \)[/tex] (en Kelvin):
[tex]\[ 430^{\circ}C = 430 + 273 = 703 \, K \][/tex]
Como [tex]\( \Delta n = 0 \)[/tex]:
[tex]\[ K_p = K_c (RT)^0 = K_c = 54.3 \][/tex]
Entonces:
[tex]\[ K_p = 54.3 \][/tex]
### Resumen de resultados
a) La expresión de [tex]\( K_c \)[/tex] es:
[tex]\[ K_c = \frac{[HI]^2}{[H_2][I_2]} \][/tex]
b) Las concentraciones en equilibrio son:
[tex]\[ [H_2] = 0.107 \, \text{M}, \quad [I_2] = 0.107 \, \text{M}, \quad [HI] = 0.786 \, \text{M} \][/tex]
c) [tex]\( K_p = 54.3 \)[/tex]
### Paso a paso:
Dado:
- Eqilibrio químico:
[tex]\[ H_2(g) + I_2(g) \leftrightarrow 2HI(g) \][/tex]
- Se introducen 0,5 moles de [tex]$H_2$[/tex] y 0,5 moles de [tex]$I_2$[/tex] en un recipiente de 1L.
- La constante de equilibrio, [tex]$K_c$[/tex], es 54,3 a [tex]$430^{\circ}C$[/tex].
Objetivo:
a) Escribir la expresión de [tex]$K_c$[/tex] para esta reacción.
b) Determinar las concentraciones de [tex]$H_2$[/tex], [tex]$I_2$[/tex] y [tex]$HI$[/tex] en el equilibrio.
c) Determinar [tex]$K_p$[/tex].
### a) Expresión de [tex]\( K_c \)[/tex]
La constante de equilibrio [tex]$K_c$[/tex] para una reacción general:
[tex]\[ aA + bB \leftrightarrow cC + dD \][/tex]
se escribe como:
[tex]\[ K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b} \][/tex]
Para la reacción dada:
[tex]\[ H_2(g) + I_2(g) \leftrightarrow 2HI(g) \][/tex]
La expresión de [tex]\( K_c \)[/tex] es:
[tex]\[ K_c = \frac{[HI]^2}{[H_2][I_2]} \][/tex]
### b) Determinar las concentraciones en equilibrio
Partimos con:
[tex]\[ [H_2]_0 = 0.5 \, \text{M} \][/tex]
[tex]\[ [I_2]_0 = 0.5 \, \text{M} \][/tex]
[tex]\[ [HI]_0 = 0 \, \text{M} \][/tex]
Si [tex]\(x\)[/tex] moles de [tex]$H_2$[/tex] e [tex]$I_2$[/tex] reaccionan, la concentración en el equilibrio será:
[tex]\[ [H_2] = [I_2] = 0.5 - x \][/tex]
[tex]\[ [HI] = 2x \][/tex]
Sustituimos en la expresión de [tex]\( K_c \)[/tex]:
[tex]\[ K_c = 54.3 = \frac{(2x)^2}{(0.5 - x)(0.5 - x)} \][/tex]
Resolvemos la ecuación cuadrática:
[tex]\[ 54.3 = \frac{4x^2}{(0.5 - x)^2} \][/tex]
Tomando la raíz cuadrada en ambos lados:
[tex]\[ \sqrt{54.3} = \frac{2x}{0.5 - x} \][/tex]
[tex]\[ \sqrt{54.3} (0.5 - x) = 2x \][/tex]
Reorganizamos para resolver para [tex]\(x\)[/tex]:
[tex]\[ \sqrt{54.3} \cdot 0.5 - \sqrt{54.3} \cdot x = 2x \][/tex]
[tex]\[ 0.5\sqrt{54.3} = (\sqrt{54.3} + 2)x \][/tex]
[tex]\[ x = \frac{0.5\sqrt{54.3}}{\sqrt{54.3} + 2} \][/tex]
Calculamos [tex]\(x\)[/tex]:
[tex]\[ \sqrt{54.3} \approx 7.37 \][/tex]
[tex]\[ x = \frac{0.5 \cdot 7.37}{7.37 + 2} \approx \frac{3.685}{9.37} \approx 0.393 \][/tex]
Entonces:
[tex]\[ [H_2] = 0.5 - x \approx 0.5 - 0.393 \approx 0.107 \, \text{M} \][/tex]
[tex]\[ [I_2] = 0.5 - x \approx 0.107 \, \text{M} \][/tex]
[tex]\[ [HI] = 2x \approx 2 \cdot 0.393 \approx 0.786 \, \text{M} \][/tex]
### c) Determinar [tex]\( K_p \)[/tex]
Para una reacción en fase gaseosa:
[tex]\[ K_p = K_c (RT)^{\Delta n} \][/tex]
Donde [tex]\( \Delta n \)[/tex] es el cambio en el número de moles de gas (productos - reactivos):
[tex]\[ \Delta n = 2 - 1 - 1 = 0 \][/tex]
A una temperatura dada [tex]\( T \)[/tex] (en Kelvin):
[tex]\[ 430^{\circ}C = 430 + 273 = 703 \, K \][/tex]
Como [tex]\( \Delta n = 0 \)[/tex]:
[tex]\[ K_p = K_c (RT)^0 = K_c = 54.3 \][/tex]
Entonces:
[tex]\[ K_p = 54.3 \][/tex]
### Resumen de resultados
a) La expresión de [tex]\( K_c \)[/tex] es:
[tex]\[ K_c = \frac{[HI]^2}{[H_2][I_2]} \][/tex]
b) Las concentraciones en equilibrio son:
[tex]\[ [H_2] = 0.107 \, \text{M}, \quad [I_2] = 0.107 \, \text{M}, \quad [HI] = 0.786 \, \text{M} \][/tex]
c) [tex]\( K_p = 54.3 \)[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.