Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's solve the problem step by step.
We are given:
- [tex]\( q_1 = 5 \mu C = 5 \times 10^{-6} \)[/tex] C
- [tex]\( q_2 = 2 \mu C = 2 \times 10^{-6} \)[/tex] C
- The distance between the charges [tex]\( r = 3 \times 10^{-2} \)[/tex] m
We need to find the magnitude and direction of the electrical force [tex]\( F_e \)[/tex] applied by [tex]\( q_1 \)[/tex] on [tex]\( q_2 \)[/tex].
#### Step 1: Use Coulomb's Law
Coulomb's law states that the magnitude of the electrical force between two point charges is given by:
[tex]\[ F_e = k \frac{q_1 q_2}{r^2} \][/tex]
where [tex]\( k \)[/tex] is Coulomb's constant, approximately [tex]\( 8.99 \times 10^9 \)[/tex] N·m²/C².
#### Step 2: Plug in the values
Let's plug in the given values into Coulomb's law formula:
[tex]\[ q_1 = 5 \times 10^{-6} \text{ C} \][/tex]
[tex]\[ q_2 = 2 \times 10^{-6} \text{ C} \][/tex]
[tex]\[ r = 3 \times 10^{-2} \text{ m} \][/tex]
[tex]\[ k = 8.99 \times 10^9 \text{ N·m}^2/\text{C}^2 \][/tex]
[tex]\[ F_e = 8.99 \times 10^9 \times \frac{(5 \times 10^{-6})(2 \times 10^{-6})}{(3 \times 10^{-2})^2} \][/tex]
#### Step 3: Calculate the magnitude
By calculating the above expression, we get:
[tex]\[ F_e = 99.86168652631305 \text{ N} \][/tex]
So, the magnitude of the electrical force [tex]\( F_e \)[/tex] is approximately [tex]\( 100 \text{ N} \)[/tex].
#### Step 4: Determine the direction
Both charges [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are positive. Since like charges repel each other, the force exerted by [tex]\( q_1 \)[/tex] on [tex]\( q_2 \)[/tex] will be directed away from [tex]\( q_1 \)[/tex]. Given that [tex]\( q_1 \)[/tex] is west of [tex]\( q_2 \)[/tex], the force on [tex]\( q_2 \)[/tex] will be directed towards the east.
Thus, the magnitude and direction of the electrical force [tex]\( F_e \)[/tex] applied by [tex]\( q_1 \)[/tex] on [tex]\( q_2 \)[/tex] are:
[tex]\[ \text{Magnitude: } 100 \text{ N} \][/tex]
[tex]\[ \text{Direction: } \text{east} \][/tex]
So, the correct answer is:
[tex]\[ \text{magnitude: } 100 \text{ N} \][/tex]
[tex]\[ \text{direction: } east \][/tex]
We are given:
- [tex]\( q_1 = 5 \mu C = 5 \times 10^{-6} \)[/tex] C
- [tex]\( q_2 = 2 \mu C = 2 \times 10^{-6} \)[/tex] C
- The distance between the charges [tex]\( r = 3 \times 10^{-2} \)[/tex] m
We need to find the magnitude and direction of the electrical force [tex]\( F_e \)[/tex] applied by [tex]\( q_1 \)[/tex] on [tex]\( q_2 \)[/tex].
#### Step 1: Use Coulomb's Law
Coulomb's law states that the magnitude of the electrical force between two point charges is given by:
[tex]\[ F_e = k \frac{q_1 q_2}{r^2} \][/tex]
where [tex]\( k \)[/tex] is Coulomb's constant, approximately [tex]\( 8.99 \times 10^9 \)[/tex] N·m²/C².
#### Step 2: Plug in the values
Let's plug in the given values into Coulomb's law formula:
[tex]\[ q_1 = 5 \times 10^{-6} \text{ C} \][/tex]
[tex]\[ q_2 = 2 \times 10^{-6} \text{ C} \][/tex]
[tex]\[ r = 3 \times 10^{-2} \text{ m} \][/tex]
[tex]\[ k = 8.99 \times 10^9 \text{ N·m}^2/\text{C}^2 \][/tex]
[tex]\[ F_e = 8.99 \times 10^9 \times \frac{(5 \times 10^{-6})(2 \times 10^{-6})}{(3 \times 10^{-2})^2} \][/tex]
#### Step 3: Calculate the magnitude
By calculating the above expression, we get:
[tex]\[ F_e = 99.86168652631305 \text{ N} \][/tex]
So, the magnitude of the electrical force [tex]\( F_e \)[/tex] is approximately [tex]\( 100 \text{ N} \)[/tex].
#### Step 4: Determine the direction
Both charges [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are positive. Since like charges repel each other, the force exerted by [tex]\( q_1 \)[/tex] on [tex]\( q_2 \)[/tex] will be directed away from [tex]\( q_1 \)[/tex]. Given that [tex]\( q_1 \)[/tex] is west of [tex]\( q_2 \)[/tex], the force on [tex]\( q_2 \)[/tex] will be directed towards the east.
Thus, the magnitude and direction of the electrical force [tex]\( F_e \)[/tex] applied by [tex]\( q_1 \)[/tex] on [tex]\( q_2 \)[/tex] are:
[tex]\[ \text{Magnitude: } 100 \text{ N} \][/tex]
[tex]\[ \text{Direction: } \text{east} \][/tex]
So, the correct answer is:
[tex]\[ \text{magnitude: } 100 \text{ N} \][/tex]
[tex]\[ \text{direction: } east \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.