Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's analyze the logical statements provided:
1. [tex]\( p \leftrightarrow q \)[/tex]: This means "He is wearing a coat if and only if the temperature is below 30°F." In other words, [tex]\( p \leftrightarrow q \)[/tex] asserts that the presence of one condition necessarily implies the presence of the other, and vice versa.
2. [tex]\( p \wedge q \)[/tex]: This means "He is wearing a coat and the temperature is below 30°F". This is a conjunction which combines both statements [tex]\( p \)[/tex] and [tex]\( q \)[/tex] into a single statement that is true only if both [tex]\( p \)[/tex] and [tex]\( q \)[/tex] are true simultaneously.
Now let's examine each of the options provided in the question to see which one corresponds to [tex]\( p \wedge q \)[/tex]:
- Option 1: "He is wearing a coat or the temperature is below 30°F".
- This corresponds to [tex]\( p \vee q \)[/tex], which represents a logical "or" and is true if either [tex]\( p \)[/tex] or [tex]\( q \)[/tex] is true or both are true. This does not match our requirement of [tex]\( p \wedge q \)[/tex].
- Option 2: "He is wearing a coat and the temperature is below 30°F".
- This directly corresponds to [tex]\( p \wedge q \)[/tex]. It explicitly states that both conditions must be true at the same time.
- Option 3: "If he is wearing a coat, then the temperature is below 30°F".
- This corresponds to [tex]\( p \rightarrow q \)[/tex], which represents a logical "if-then" statement. This does not match our requirement of [tex]\( p \wedge q \)[/tex].
- Option 4: "If he is not wearing a coat, then the temperature is not below 30°F".
- This corresponds to [tex]\( \neg p \rightarrow \neg q \)[/tex], which is the contrapositive of [tex]\( p \rightarrow q \)[/tex]. This does not match our requirement of [tex]\( p \wedge q \)[/tex].
Based on the detailed analysis above, the correct representation of [tex]\( p \wedge q \)[/tex] is:
He is wearing a coat and the temperature is below 30°F.
So, the answer is:
Option 2: He is wearing a coat and the temperature is below 30°F.
1. [tex]\( p \leftrightarrow q \)[/tex]: This means "He is wearing a coat if and only if the temperature is below 30°F." In other words, [tex]\( p \leftrightarrow q \)[/tex] asserts that the presence of one condition necessarily implies the presence of the other, and vice versa.
2. [tex]\( p \wedge q \)[/tex]: This means "He is wearing a coat and the temperature is below 30°F". This is a conjunction which combines both statements [tex]\( p \)[/tex] and [tex]\( q \)[/tex] into a single statement that is true only if both [tex]\( p \)[/tex] and [tex]\( q \)[/tex] are true simultaneously.
Now let's examine each of the options provided in the question to see which one corresponds to [tex]\( p \wedge q \)[/tex]:
- Option 1: "He is wearing a coat or the temperature is below 30°F".
- This corresponds to [tex]\( p \vee q \)[/tex], which represents a logical "or" and is true if either [tex]\( p \)[/tex] or [tex]\( q \)[/tex] is true or both are true. This does not match our requirement of [tex]\( p \wedge q \)[/tex].
- Option 2: "He is wearing a coat and the temperature is below 30°F".
- This directly corresponds to [tex]\( p \wedge q \)[/tex]. It explicitly states that both conditions must be true at the same time.
- Option 3: "If he is wearing a coat, then the temperature is below 30°F".
- This corresponds to [tex]\( p \rightarrow q \)[/tex], which represents a logical "if-then" statement. This does not match our requirement of [tex]\( p \wedge q \)[/tex].
- Option 4: "If he is not wearing a coat, then the temperature is not below 30°F".
- This corresponds to [tex]\( \neg p \rightarrow \neg q \)[/tex], which is the contrapositive of [tex]\( p \rightarrow q \)[/tex]. This does not match our requirement of [tex]\( p \wedge q \)[/tex].
Based on the detailed analysis above, the correct representation of [tex]\( p \wedge q \)[/tex] is:
He is wearing a coat and the temperature is below 30°F.
So, the answer is:
Option 2: He is wearing a coat and the temperature is below 30°F.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.