Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To model the number of bacteria in a colony that begins with a single cell and doubles in size every hour, we use an exponential function.
### Step-by-Step Solution
1. Identify the Initial Quantity (A):
- The initial number of bacteria is [tex]\( A = 1 \)[/tex]. This is because the colony starts with a single bacterial cell.
2. Determine the Base of the Exponential Function (b):
- The bacteria colony doubles in size every hour. This means the growth rate is exponential with a base [tex]\( b = 2 \)[/tex].
3. Write the Exponential Expression:
- The general form of an exponential function for growth is [tex]\( A \cdot (b^x) \)[/tex], where:
- [tex]\( A \)[/tex] is the initial amount,
- [tex]\( b \)[/tex] is the growth factor per time period (in this case, per hour),
- [tex]\( x \)[/tex] is the number of hours.
Given these values:
- [tex]\( A = 1 \)[/tex]
- [tex]\( b = 2 \)[/tex]
We can write the expression to model the number of bacteria after [tex]\( x \)[/tex] hours as:
[tex]\[ 1 \cdot (2^x) \][/tex]
Therefore, the exponential expression is:
[tex]\[ A \cdot (b^x) = 1 \cdot (2^x) \][/tex]
### Result:
So, the exponential expression to model the bacterial count after [tex]\( x \)[/tex] hours is:
[tex]\[ 1 \cdot (2^x) \][/tex]
### Final Form:
To summarize, the values are:
- [tex]\( A = 1 \)[/tex]
- [tex]\( b = 2 \)[/tex]
Thus, the complete exponential expression is:
[tex]\[ 1 \cdot (2^x) \][/tex]
Thank you for following along with this explanation. If you have further questions or need clarification on any step, feel free to ask!
### Step-by-Step Solution
1. Identify the Initial Quantity (A):
- The initial number of bacteria is [tex]\( A = 1 \)[/tex]. This is because the colony starts with a single bacterial cell.
2. Determine the Base of the Exponential Function (b):
- The bacteria colony doubles in size every hour. This means the growth rate is exponential with a base [tex]\( b = 2 \)[/tex].
3. Write the Exponential Expression:
- The general form of an exponential function for growth is [tex]\( A \cdot (b^x) \)[/tex], where:
- [tex]\( A \)[/tex] is the initial amount,
- [tex]\( b \)[/tex] is the growth factor per time period (in this case, per hour),
- [tex]\( x \)[/tex] is the number of hours.
Given these values:
- [tex]\( A = 1 \)[/tex]
- [tex]\( b = 2 \)[/tex]
We can write the expression to model the number of bacteria after [tex]\( x \)[/tex] hours as:
[tex]\[ 1 \cdot (2^x) \][/tex]
Therefore, the exponential expression is:
[tex]\[ A \cdot (b^x) = 1 \cdot (2^x) \][/tex]
### Result:
So, the exponential expression to model the bacterial count after [tex]\( x \)[/tex] hours is:
[tex]\[ 1 \cdot (2^x) \][/tex]
### Final Form:
To summarize, the values are:
- [tex]\( A = 1 \)[/tex]
- [tex]\( b = 2 \)[/tex]
Thus, the complete exponential expression is:
[tex]\[ 1 \cdot (2^x) \][/tex]
Thank you for following along with this explanation. If you have further questions or need clarification on any step, feel free to ask!
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.