Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Study the table.

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $y$ \\
\hline
-2 & 8 \\
\hline
-1 & 2 \\
\hline
0 & 0 \\
\hline
1 & 2 \\
\hline
2 & 8 \\
\hline
\end{tabular}
\][/tex]

Which best describes the function represented by the data in the table?

A. linear with a common ratio of 4
B. linear with a common second difference of 4
C. quadratic with a common ratio of 4
D. quadratic with a common second difference of 4


Sagot :

To determine the type of function represented by the data in the table and to find the best description, we need to analyze the differences between successive values.

Given the table:

[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline -2 & 8 \\ \hline -1 & 2 \\ \hline 0 & 0 \\ \hline 1 & 2 \\ \hline 2 & 8 \\ \hline \end{tabular} \][/tex]

First, we calculate the first differences. The first differences are found by subtracting each [tex]$y$[/tex] value from the next [tex]$y$[/tex] value:

[tex]\[ \begin{align*} \Delta y_1 & = y(-1) - y(-2) = 2 - 8 = -6 \\ \Delta y_2 & = y(0) - y(-1) = 0 - 2 = -2 \\ \Delta y_3 & = y(1) - y(0) = 2 - 0 = 2 \\ \Delta y_4 & = y(2) - y(1) = 8 - 2 = 6 \\ \end{align*} \][/tex]

So, the first differences are:

[tex]\[ [-6, -2, 2, 6] \][/tex]

Next, we calculate the second differences. The second differences are found by subtracting each first difference from the next first difference:

[tex]\[ \begin{align*} \Delta^2 y_1 & = \Delta y_2 - \Delta y_1 = (-2) - (-6) = 4 \\ \Delta^2 y_2 & = \Delta y_3 - \Delta y_2 = 2 - (-2) = 4 \\ \Delta^2 y_3 & = \Delta y_4 - \Delta y_3 = 6 - 2 = 4 \\ \end{align*} \][/tex]

So, the second differences are:

[tex]\[ [4, 4, 4] \][/tex]

Since the second differences are constant, this tells us that the function is quadratic. The common second difference of [tex]\(4\)[/tex] further validates this.

Thus, the best description of the function represented by the data in the table is:

quadratic with a common second difference of 4.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.