At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To write the equation of a line parallel to the given line [tex]\( EF \)[/tex], we need to understand the properties of parallel lines. Parallel lines have the same slope.
Given:
- The equation of line [tex]\( EF \)[/tex] is [tex]\( y = 2x + 1 \)[/tex].
From this equation, we can see that the slope [tex]\( m \)[/tex] of line [tex]\( EF \)[/tex] is 2.
We need to find the equation of a line that is parallel to line [tex]\( EF \)[/tex] and passes through the point [tex]\( (0, 2) \)[/tex].
Since parallel lines have the same slope, the slope of our desired line is also 2.
The general form of a line's equation in slope-intercept form is:
[tex]\[ y = mx + b \][/tex]
Where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept. Substituting the slope [tex]\( m = 2 \)[/tex], we get:
[tex]\[ y = 2x + b \][/tex]
Now, we need to determine [tex]\( b \)[/tex] using the point [tex]\( (0, 2) \)[/tex].
Substitute the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values from the point [tex]\( (0, 2) \)[/tex] into the equation:
[tex]\[ 2 = 2(0) + b \][/tex]
[tex]\[ 2 = b \][/tex]
So, the y-intercept [tex]\( b \)[/tex] is 2.
Therefore, the equation of the line parallel to [tex]\( EF \)[/tex] and passing through the point [tex]\( (0, 2) \)[/tex] is:
[tex]\[ y = 2x + 2 \][/tex]
Among the given choices, this corresponds to the second option:
[tex]\[ y = 2x + 2 \][/tex]
Given:
- The equation of line [tex]\( EF \)[/tex] is [tex]\( y = 2x + 1 \)[/tex].
From this equation, we can see that the slope [tex]\( m \)[/tex] of line [tex]\( EF \)[/tex] is 2.
We need to find the equation of a line that is parallel to line [tex]\( EF \)[/tex] and passes through the point [tex]\( (0, 2) \)[/tex].
Since parallel lines have the same slope, the slope of our desired line is also 2.
The general form of a line's equation in slope-intercept form is:
[tex]\[ y = mx + b \][/tex]
Where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept. Substituting the slope [tex]\( m = 2 \)[/tex], we get:
[tex]\[ y = 2x + b \][/tex]
Now, we need to determine [tex]\( b \)[/tex] using the point [tex]\( (0, 2) \)[/tex].
Substitute the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values from the point [tex]\( (0, 2) \)[/tex] into the equation:
[tex]\[ 2 = 2(0) + b \][/tex]
[tex]\[ 2 = b \][/tex]
So, the y-intercept [tex]\( b \)[/tex] is 2.
Therefore, the equation of the line parallel to [tex]\( EF \)[/tex] and passing through the point [tex]\( (0, 2) \)[/tex] is:
[tex]\[ y = 2x + 2 \][/tex]
Among the given choices, this corresponds to the second option:
[tex]\[ y = 2x + 2 \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.