At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To calculate the nuclear binding energy, we use Einstein's mass-energy equivalence principle given by the formula [tex]\(E = \Delta m \cdot c^2\)[/tex], where [tex]\(E\)[/tex] is the energy, [tex]\(\Delta m\)[/tex] is the mass defect, and [tex]\(c\)[/tex] is the speed of light.
Given:
1. The mass defect [tex]\(\Delta m = 0.09564 \, \text{amu}\)[/tex]
2. Conversion factor [tex]\(1 \, \text{amu} = 1.6606 \times 10^{-27} \, \text{kg}\)[/tex]
3. Speed of light [tex]\(c = 3.0 \times 10^8 \, \text{m/s}\)[/tex]
We need to convert the mass defect from atomic mass units (amu) to kilograms (kg). After converting, we can then use the mass-energy equivalence formula.
### Step-by-Step Solution:
1. Convert the mass defect to kilograms:
[tex]\[ \Delta m_{kg} = 0.09564 \, \text{amu} \times 1.6606 \times 10^{-27} \, \frac{\text{kg}}{\text{amu}} \][/tex]
2. Apply Einstein’s mass-energy equivalence principle:
[tex]\[ E = \Delta m \cdot c^2 \][/tex]
Using [tex]\(\Delta m_{kg}\)[/tex] from the first step:
[tex]\[ E = (0.09564 \times 1.6606 \times 10^{-27} \, \text{kg}) \times (3.0 \times 10^8 \, \text{m/s})^2 \][/tex]
So the correct setup to calculate the nuclear binding energy is:
[tex]\[ 0.09564 \, \text{amu} \times \left(1.6606 \times 10^{-27} \, \text{kg/amu}\right) \times \left(3.0 \times 10^8\right)^2 \][/tex]
After calculating this expressing (as per above information), the binding energy comes out to be:
[tex]\[ E = 1.429378056 \times 10^{-11} \, \text{J} \][/tex]
Therefore, the correct answer for the setup is:
[tex]\[ 0.09564 \, amu \times \left(1.6606 \times 10^{-27} \, kg \right) / amu \times \left(3.0 \times 10^8\right)^2 \][/tex]
Given:
1. The mass defect [tex]\(\Delta m = 0.09564 \, \text{amu}\)[/tex]
2. Conversion factor [tex]\(1 \, \text{amu} = 1.6606 \times 10^{-27} \, \text{kg}\)[/tex]
3. Speed of light [tex]\(c = 3.0 \times 10^8 \, \text{m/s}\)[/tex]
We need to convert the mass defect from atomic mass units (amu) to kilograms (kg). After converting, we can then use the mass-energy equivalence formula.
### Step-by-Step Solution:
1. Convert the mass defect to kilograms:
[tex]\[ \Delta m_{kg} = 0.09564 \, \text{amu} \times 1.6606 \times 10^{-27} \, \frac{\text{kg}}{\text{amu}} \][/tex]
2. Apply Einstein’s mass-energy equivalence principle:
[tex]\[ E = \Delta m \cdot c^2 \][/tex]
Using [tex]\(\Delta m_{kg}\)[/tex] from the first step:
[tex]\[ E = (0.09564 \times 1.6606 \times 10^{-27} \, \text{kg}) \times (3.0 \times 10^8 \, \text{m/s})^2 \][/tex]
So the correct setup to calculate the nuclear binding energy is:
[tex]\[ 0.09564 \, \text{amu} \times \left(1.6606 \times 10^{-27} \, \text{kg/amu}\right) \times \left(3.0 \times 10^8\right)^2 \][/tex]
After calculating this expressing (as per above information), the binding energy comes out to be:
[tex]\[ E = 1.429378056 \times 10^{-11} \, \text{J} \][/tex]
Therefore, the correct answer for the setup is:
[tex]\[ 0.09564 \, amu \times \left(1.6606 \times 10^{-27} \, kg \right) / amu \times \left(3.0 \times 10^8\right)^2 \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.