Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To calculate the nuclear binding energy, we use Einstein's mass-energy equivalence principle given by the formula [tex]\(E = \Delta m \cdot c^2\)[/tex], where [tex]\(E\)[/tex] is the energy, [tex]\(\Delta m\)[/tex] is the mass defect, and [tex]\(c\)[/tex] is the speed of light.
Given:
1. The mass defect [tex]\(\Delta m = 0.09564 \, \text{amu}\)[/tex]
2. Conversion factor [tex]\(1 \, \text{amu} = 1.6606 \times 10^{-27} \, \text{kg}\)[/tex]
3. Speed of light [tex]\(c = 3.0 \times 10^8 \, \text{m/s}\)[/tex]
We need to convert the mass defect from atomic mass units (amu) to kilograms (kg). After converting, we can then use the mass-energy equivalence formula.
### Step-by-Step Solution:
1. Convert the mass defect to kilograms:
[tex]\[ \Delta m_{kg} = 0.09564 \, \text{amu} \times 1.6606 \times 10^{-27} \, \frac{\text{kg}}{\text{amu}} \][/tex]
2. Apply Einstein’s mass-energy equivalence principle:
[tex]\[ E = \Delta m \cdot c^2 \][/tex]
Using [tex]\(\Delta m_{kg}\)[/tex] from the first step:
[tex]\[ E = (0.09564 \times 1.6606 \times 10^{-27} \, \text{kg}) \times (3.0 \times 10^8 \, \text{m/s})^2 \][/tex]
So the correct setup to calculate the nuclear binding energy is:
[tex]\[ 0.09564 \, \text{amu} \times \left(1.6606 \times 10^{-27} \, \text{kg/amu}\right) \times \left(3.0 \times 10^8\right)^2 \][/tex]
After calculating this expressing (as per above information), the binding energy comes out to be:
[tex]\[ E = 1.429378056 \times 10^{-11} \, \text{J} \][/tex]
Therefore, the correct answer for the setup is:
[tex]\[ 0.09564 \, amu \times \left(1.6606 \times 10^{-27} \, kg \right) / amu \times \left(3.0 \times 10^8\right)^2 \][/tex]
Given:
1. The mass defect [tex]\(\Delta m = 0.09564 \, \text{amu}\)[/tex]
2. Conversion factor [tex]\(1 \, \text{amu} = 1.6606 \times 10^{-27} \, \text{kg}\)[/tex]
3. Speed of light [tex]\(c = 3.0 \times 10^8 \, \text{m/s}\)[/tex]
We need to convert the mass defect from atomic mass units (amu) to kilograms (kg). After converting, we can then use the mass-energy equivalence formula.
### Step-by-Step Solution:
1. Convert the mass defect to kilograms:
[tex]\[ \Delta m_{kg} = 0.09564 \, \text{amu} \times 1.6606 \times 10^{-27} \, \frac{\text{kg}}{\text{amu}} \][/tex]
2. Apply Einstein’s mass-energy equivalence principle:
[tex]\[ E = \Delta m \cdot c^2 \][/tex]
Using [tex]\(\Delta m_{kg}\)[/tex] from the first step:
[tex]\[ E = (0.09564 \times 1.6606 \times 10^{-27} \, \text{kg}) \times (3.0 \times 10^8 \, \text{m/s})^2 \][/tex]
So the correct setup to calculate the nuclear binding energy is:
[tex]\[ 0.09564 \, \text{amu} \times \left(1.6606 \times 10^{-27} \, \text{kg/amu}\right) \times \left(3.0 \times 10^8\right)^2 \][/tex]
After calculating this expressing (as per above information), the binding energy comes out to be:
[tex]\[ E = 1.429378056 \times 10^{-11} \, \text{J} \][/tex]
Therefore, the correct answer for the setup is:
[tex]\[ 0.09564 \, amu \times \left(1.6606 \times 10^{-27} \, kg \right) / amu \times \left(3.0 \times 10^8\right)^2 \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.