Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To calculate the nuclear binding energy, we use Einstein's mass-energy equivalence principle given by the formula [tex]\(E = \Delta m \cdot c^2\)[/tex], where [tex]\(E\)[/tex] is the energy, [tex]\(\Delta m\)[/tex] is the mass defect, and [tex]\(c\)[/tex] is the speed of light.
Given:
1. The mass defect [tex]\(\Delta m = 0.09564 \, \text{amu}\)[/tex]
2. Conversion factor [tex]\(1 \, \text{amu} = 1.6606 \times 10^{-27} \, \text{kg}\)[/tex]
3. Speed of light [tex]\(c = 3.0 \times 10^8 \, \text{m/s}\)[/tex]
We need to convert the mass defect from atomic mass units (amu) to kilograms (kg). After converting, we can then use the mass-energy equivalence formula.
### Step-by-Step Solution:
1. Convert the mass defect to kilograms:
[tex]\[ \Delta m_{kg} = 0.09564 \, \text{amu} \times 1.6606 \times 10^{-27} \, \frac{\text{kg}}{\text{amu}} \][/tex]
2. Apply Einstein’s mass-energy equivalence principle:
[tex]\[ E = \Delta m \cdot c^2 \][/tex]
Using [tex]\(\Delta m_{kg}\)[/tex] from the first step:
[tex]\[ E = (0.09564 \times 1.6606 \times 10^{-27} \, \text{kg}) \times (3.0 \times 10^8 \, \text{m/s})^2 \][/tex]
So the correct setup to calculate the nuclear binding energy is:
[tex]\[ 0.09564 \, \text{amu} \times \left(1.6606 \times 10^{-27} \, \text{kg/amu}\right) \times \left(3.0 \times 10^8\right)^2 \][/tex]
After calculating this expressing (as per above information), the binding energy comes out to be:
[tex]\[ E = 1.429378056 \times 10^{-11} \, \text{J} \][/tex]
Therefore, the correct answer for the setup is:
[tex]\[ 0.09564 \, amu \times \left(1.6606 \times 10^{-27} \, kg \right) / amu \times \left(3.0 \times 10^8\right)^2 \][/tex]
Given:
1. The mass defect [tex]\(\Delta m = 0.09564 \, \text{amu}\)[/tex]
2. Conversion factor [tex]\(1 \, \text{amu} = 1.6606 \times 10^{-27} \, \text{kg}\)[/tex]
3. Speed of light [tex]\(c = 3.0 \times 10^8 \, \text{m/s}\)[/tex]
We need to convert the mass defect from atomic mass units (amu) to kilograms (kg). After converting, we can then use the mass-energy equivalence formula.
### Step-by-Step Solution:
1. Convert the mass defect to kilograms:
[tex]\[ \Delta m_{kg} = 0.09564 \, \text{amu} \times 1.6606 \times 10^{-27} \, \frac{\text{kg}}{\text{amu}} \][/tex]
2. Apply Einstein’s mass-energy equivalence principle:
[tex]\[ E = \Delta m \cdot c^2 \][/tex]
Using [tex]\(\Delta m_{kg}\)[/tex] from the first step:
[tex]\[ E = (0.09564 \times 1.6606 \times 10^{-27} \, \text{kg}) \times (3.0 \times 10^8 \, \text{m/s})^2 \][/tex]
So the correct setup to calculate the nuclear binding energy is:
[tex]\[ 0.09564 \, \text{amu} \times \left(1.6606 \times 10^{-27} \, \text{kg/amu}\right) \times \left(3.0 \times 10^8\right)^2 \][/tex]
After calculating this expressing (as per above information), the binding energy comes out to be:
[tex]\[ E = 1.429378056 \times 10^{-11} \, \text{J} \][/tex]
Therefore, the correct answer for the setup is:
[tex]\[ 0.09564 \, amu \times \left(1.6606 \times 10^{-27} \, kg \right) / amu \times \left(3.0 \times 10^8\right)^2 \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.