Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure! Let's apply the Rational Zero Theorem to the polynomial [tex]\( f(x) = 9x^4 - x^3 + 5x^2 - 2x - 6 \)[/tex] to list all possible rational zeros. The Rational Zero Theorem states that any rational zero, [tex]\( \frac{p}{q} \)[/tex], of a polynomial with integer coefficients, is such that [tex]\( p \)[/tex] is a factor of the constant term and [tex]\( q \)[/tex] is a factor of the leading coefficient.
Here’s the step-by-step process:
1. Identify the constant term and the leading coefficient:
- The constant term [tex]\( a_0 \)[/tex] is [tex]\(-6\)[/tex].
- The leading coefficient [tex]\( a_n \)[/tex] (coefficient of the highest degree term) is [tex]\(9\)[/tex].
2. List all factors of the constant term ([tex]\( a_0 = -6 \)[/tex]):
Factors of [tex]\(-6\)[/tex] include: [tex]\( \pm 1, \pm 2, \pm 3, \pm 6 \)[/tex].
3. List all factors of the leading coefficient ([tex]\( a_n = 9 \)[/tex]):
Factors of [tex]\(9\)[/tex] include: [tex]\( \pm 1, \pm 3, \pm 9 \)[/tex].
4. Form all possible rational zeros [tex]\( \frac{p}{q} \)[/tex]:
For each factor [tex]\( p \)[/tex] of the constant term and each factor [tex]\( q \)[/tex] of the leading coefficient, we form the fractions [tex]\( \frac{p}{q} \)[/tex] and [tex]\( \frac{-p}{q} \)[/tex].
- Possible factors [tex]\( p \)[/tex] of the constant term [tex]\(-6\)[/tex]: [tex]\( \pm 1, \pm 2, \pm 3, \pm 6 \)[/tex].
- Possible factors [tex]\( q \)[/tex] of the leading coefficient [tex]\(9\)[/tex]: [tex]\( \pm 1, \pm 3, \pm 9 \)[/tex].
5. Generate all combinations of [tex]\( \frac{p}{q} \)[/tex] and simplify:
- When [tex]\( q = 1 \)[/tex]: [tex]\( \frac{\pm 1}{1} = \pm 1 \)[/tex], [tex]\( \frac{\pm 2}{1} = \pm 2 \)[/tex], [tex]\( \frac{\pm 3}{1} = \pm 3 \)[/tex], [tex]\( \frac{\pm 6}{1} = \pm 6 \)[/tex].
- When [tex]\( q = 3 \)[/tex]: [tex]\( \frac{\pm 1}{3} = \pm \frac{1}{3} \)[/tex], [tex]\( \frac{\pm 2}{3} = \pm \frac{2}{3} \)[/tex], [tex]\( \frac{\pm 3}{3} = \pm 1 \)[/tex], [tex]\( \frac{\pm 6}{3} = \pm 2 \)[/tex].
- When [tex]\( q = 9 \)[/tex]: [tex]\( \frac{\pm 1}{9} = \pm \frac{1}{9} \)[/tex], [tex]\( \frac{\pm 2}{9} = \pm \frac{2}{9} \)[/tex], [tex]\( \frac{\pm 3}{9} = \pm \frac{1}{3} \)[/tex], [tex]\( \frac{\pm 6}{9} = \pm \frac{2}{3} \)[/tex].
6. Combine and remove duplicates:
Listing all unique combinations from above, we have the following possible rational zeros:
[tex]\[ \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{1}{9}, \pm \frac{2}{9} \][/tex]
So, the list of all possible rational zeros of the polynomial [tex]\( f(x) = 9x^4 - x^3 + 5x^2 - 2x - 6 \)[/tex] is:
[tex]\[ \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{1}{9}, \pm \frac{2}{9} \][/tex]
Here’s the step-by-step process:
1. Identify the constant term and the leading coefficient:
- The constant term [tex]\( a_0 \)[/tex] is [tex]\(-6\)[/tex].
- The leading coefficient [tex]\( a_n \)[/tex] (coefficient of the highest degree term) is [tex]\(9\)[/tex].
2. List all factors of the constant term ([tex]\( a_0 = -6 \)[/tex]):
Factors of [tex]\(-6\)[/tex] include: [tex]\( \pm 1, \pm 2, \pm 3, \pm 6 \)[/tex].
3. List all factors of the leading coefficient ([tex]\( a_n = 9 \)[/tex]):
Factors of [tex]\(9\)[/tex] include: [tex]\( \pm 1, \pm 3, \pm 9 \)[/tex].
4. Form all possible rational zeros [tex]\( \frac{p}{q} \)[/tex]:
For each factor [tex]\( p \)[/tex] of the constant term and each factor [tex]\( q \)[/tex] of the leading coefficient, we form the fractions [tex]\( \frac{p}{q} \)[/tex] and [tex]\( \frac{-p}{q} \)[/tex].
- Possible factors [tex]\( p \)[/tex] of the constant term [tex]\(-6\)[/tex]: [tex]\( \pm 1, \pm 2, \pm 3, \pm 6 \)[/tex].
- Possible factors [tex]\( q \)[/tex] of the leading coefficient [tex]\(9\)[/tex]: [tex]\( \pm 1, \pm 3, \pm 9 \)[/tex].
5. Generate all combinations of [tex]\( \frac{p}{q} \)[/tex] and simplify:
- When [tex]\( q = 1 \)[/tex]: [tex]\( \frac{\pm 1}{1} = \pm 1 \)[/tex], [tex]\( \frac{\pm 2}{1} = \pm 2 \)[/tex], [tex]\( \frac{\pm 3}{1} = \pm 3 \)[/tex], [tex]\( \frac{\pm 6}{1} = \pm 6 \)[/tex].
- When [tex]\( q = 3 \)[/tex]: [tex]\( \frac{\pm 1}{3} = \pm \frac{1}{3} \)[/tex], [tex]\( \frac{\pm 2}{3} = \pm \frac{2}{3} \)[/tex], [tex]\( \frac{\pm 3}{3} = \pm 1 \)[/tex], [tex]\( \frac{\pm 6}{3} = \pm 2 \)[/tex].
- When [tex]\( q = 9 \)[/tex]: [tex]\( \frac{\pm 1}{9} = \pm \frac{1}{9} \)[/tex], [tex]\( \frac{\pm 2}{9} = \pm \frac{2}{9} \)[/tex], [tex]\( \frac{\pm 3}{9} = \pm \frac{1}{3} \)[/tex], [tex]\( \frac{\pm 6}{9} = \pm \frac{2}{3} \)[/tex].
6. Combine and remove duplicates:
Listing all unique combinations from above, we have the following possible rational zeros:
[tex]\[ \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{1}{9}, \pm \frac{2}{9} \][/tex]
So, the list of all possible rational zeros of the polynomial [tex]\( f(x) = 9x^4 - x^3 + 5x^2 - 2x - 6 \)[/tex] is:
[tex]\[ \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{1}{9}, \pm \frac{2}{9} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.