Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure! Let's apply the Rational Zero Theorem to the polynomial [tex]\( f(x) = 9x^4 - x^3 + 5x^2 - 2x - 6 \)[/tex] to list all possible rational zeros. The Rational Zero Theorem states that any rational zero, [tex]\( \frac{p}{q} \)[/tex], of a polynomial with integer coefficients, is such that [tex]\( p \)[/tex] is a factor of the constant term and [tex]\( q \)[/tex] is a factor of the leading coefficient.
Here’s the step-by-step process:
1. Identify the constant term and the leading coefficient:
- The constant term [tex]\( a_0 \)[/tex] is [tex]\(-6\)[/tex].
- The leading coefficient [tex]\( a_n \)[/tex] (coefficient of the highest degree term) is [tex]\(9\)[/tex].
2. List all factors of the constant term ([tex]\( a_0 = -6 \)[/tex]):
Factors of [tex]\(-6\)[/tex] include: [tex]\( \pm 1, \pm 2, \pm 3, \pm 6 \)[/tex].
3. List all factors of the leading coefficient ([tex]\( a_n = 9 \)[/tex]):
Factors of [tex]\(9\)[/tex] include: [tex]\( \pm 1, \pm 3, \pm 9 \)[/tex].
4. Form all possible rational zeros [tex]\( \frac{p}{q} \)[/tex]:
For each factor [tex]\( p \)[/tex] of the constant term and each factor [tex]\( q \)[/tex] of the leading coefficient, we form the fractions [tex]\( \frac{p}{q} \)[/tex] and [tex]\( \frac{-p}{q} \)[/tex].
- Possible factors [tex]\( p \)[/tex] of the constant term [tex]\(-6\)[/tex]: [tex]\( \pm 1, \pm 2, \pm 3, \pm 6 \)[/tex].
- Possible factors [tex]\( q \)[/tex] of the leading coefficient [tex]\(9\)[/tex]: [tex]\( \pm 1, \pm 3, \pm 9 \)[/tex].
5. Generate all combinations of [tex]\( \frac{p}{q} \)[/tex] and simplify:
- When [tex]\( q = 1 \)[/tex]: [tex]\( \frac{\pm 1}{1} = \pm 1 \)[/tex], [tex]\( \frac{\pm 2}{1} = \pm 2 \)[/tex], [tex]\( \frac{\pm 3}{1} = \pm 3 \)[/tex], [tex]\( \frac{\pm 6}{1} = \pm 6 \)[/tex].
- When [tex]\( q = 3 \)[/tex]: [tex]\( \frac{\pm 1}{3} = \pm \frac{1}{3} \)[/tex], [tex]\( \frac{\pm 2}{3} = \pm \frac{2}{3} \)[/tex], [tex]\( \frac{\pm 3}{3} = \pm 1 \)[/tex], [tex]\( \frac{\pm 6}{3} = \pm 2 \)[/tex].
- When [tex]\( q = 9 \)[/tex]: [tex]\( \frac{\pm 1}{9} = \pm \frac{1}{9} \)[/tex], [tex]\( \frac{\pm 2}{9} = \pm \frac{2}{9} \)[/tex], [tex]\( \frac{\pm 3}{9} = \pm \frac{1}{3} \)[/tex], [tex]\( \frac{\pm 6}{9} = \pm \frac{2}{3} \)[/tex].
6. Combine and remove duplicates:
Listing all unique combinations from above, we have the following possible rational zeros:
[tex]\[ \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{1}{9}, \pm \frac{2}{9} \][/tex]
So, the list of all possible rational zeros of the polynomial [tex]\( f(x) = 9x^4 - x^3 + 5x^2 - 2x - 6 \)[/tex] is:
[tex]\[ \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{1}{9}, \pm \frac{2}{9} \][/tex]
Here’s the step-by-step process:
1. Identify the constant term and the leading coefficient:
- The constant term [tex]\( a_0 \)[/tex] is [tex]\(-6\)[/tex].
- The leading coefficient [tex]\( a_n \)[/tex] (coefficient of the highest degree term) is [tex]\(9\)[/tex].
2. List all factors of the constant term ([tex]\( a_0 = -6 \)[/tex]):
Factors of [tex]\(-6\)[/tex] include: [tex]\( \pm 1, \pm 2, \pm 3, \pm 6 \)[/tex].
3. List all factors of the leading coefficient ([tex]\( a_n = 9 \)[/tex]):
Factors of [tex]\(9\)[/tex] include: [tex]\( \pm 1, \pm 3, \pm 9 \)[/tex].
4. Form all possible rational zeros [tex]\( \frac{p}{q} \)[/tex]:
For each factor [tex]\( p \)[/tex] of the constant term and each factor [tex]\( q \)[/tex] of the leading coefficient, we form the fractions [tex]\( \frac{p}{q} \)[/tex] and [tex]\( \frac{-p}{q} \)[/tex].
- Possible factors [tex]\( p \)[/tex] of the constant term [tex]\(-6\)[/tex]: [tex]\( \pm 1, \pm 2, \pm 3, \pm 6 \)[/tex].
- Possible factors [tex]\( q \)[/tex] of the leading coefficient [tex]\(9\)[/tex]: [tex]\( \pm 1, \pm 3, \pm 9 \)[/tex].
5. Generate all combinations of [tex]\( \frac{p}{q} \)[/tex] and simplify:
- When [tex]\( q = 1 \)[/tex]: [tex]\( \frac{\pm 1}{1} = \pm 1 \)[/tex], [tex]\( \frac{\pm 2}{1} = \pm 2 \)[/tex], [tex]\( \frac{\pm 3}{1} = \pm 3 \)[/tex], [tex]\( \frac{\pm 6}{1} = \pm 6 \)[/tex].
- When [tex]\( q = 3 \)[/tex]: [tex]\( \frac{\pm 1}{3} = \pm \frac{1}{3} \)[/tex], [tex]\( \frac{\pm 2}{3} = \pm \frac{2}{3} \)[/tex], [tex]\( \frac{\pm 3}{3} = \pm 1 \)[/tex], [tex]\( \frac{\pm 6}{3} = \pm 2 \)[/tex].
- When [tex]\( q = 9 \)[/tex]: [tex]\( \frac{\pm 1}{9} = \pm \frac{1}{9} \)[/tex], [tex]\( \frac{\pm 2}{9} = \pm \frac{2}{9} \)[/tex], [tex]\( \frac{\pm 3}{9} = \pm \frac{1}{3} \)[/tex], [tex]\( \frac{\pm 6}{9} = \pm \frac{2}{3} \)[/tex].
6. Combine and remove duplicates:
Listing all unique combinations from above, we have the following possible rational zeros:
[tex]\[ \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{1}{9}, \pm \frac{2}{9} \][/tex]
So, the list of all possible rational zeros of the polynomial [tex]\( f(x) = 9x^4 - x^3 + 5x^2 - 2x - 6 \)[/tex] is:
[tex]\[ \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{1}{9}, \pm \frac{2}{9} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.