Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Use the Rational Zero Theorem to list all possible rational zeros of the polynomial:

[tex]\( f(x) = 9x^4 - x^3 + 5x^2 - 2x - 6 \)[/tex]

Sagot :

Sure! Let's apply the Rational Zero Theorem to the polynomial [tex]\( f(x) = 9x^4 - x^3 + 5x^2 - 2x - 6 \)[/tex] to list all possible rational zeros. The Rational Zero Theorem states that any rational zero, [tex]\( \frac{p}{q} \)[/tex], of a polynomial with integer coefficients, is such that [tex]\( p \)[/tex] is a factor of the constant term and [tex]\( q \)[/tex] is a factor of the leading coefficient.

Here’s the step-by-step process:

1. Identify the constant term and the leading coefficient:
- The constant term [tex]\( a_0 \)[/tex] is [tex]\(-6\)[/tex].
- The leading coefficient [tex]\( a_n \)[/tex] (coefficient of the highest degree term) is [tex]\(9\)[/tex].

2. List all factors of the constant term ([tex]\( a_0 = -6 \)[/tex]):
Factors of [tex]\(-6\)[/tex] include: [tex]\( \pm 1, \pm 2, \pm 3, \pm 6 \)[/tex].

3. List all factors of the leading coefficient ([tex]\( a_n = 9 \)[/tex]):
Factors of [tex]\(9\)[/tex] include: [tex]\( \pm 1, \pm 3, \pm 9 \)[/tex].

4. Form all possible rational zeros [tex]\( \frac{p}{q} \)[/tex]:
For each factor [tex]\( p \)[/tex] of the constant term and each factor [tex]\( q \)[/tex] of the leading coefficient, we form the fractions [tex]\( \frac{p}{q} \)[/tex] and [tex]\( \frac{-p}{q} \)[/tex].

- Possible factors [tex]\( p \)[/tex] of the constant term [tex]\(-6\)[/tex]: [tex]\( \pm 1, \pm 2, \pm 3, \pm 6 \)[/tex].
- Possible factors [tex]\( q \)[/tex] of the leading coefficient [tex]\(9\)[/tex]: [tex]\( \pm 1, \pm 3, \pm 9 \)[/tex].

5. Generate all combinations of [tex]\( \frac{p}{q} \)[/tex] and simplify:

- When [tex]\( q = 1 \)[/tex]: [tex]\( \frac{\pm 1}{1} = \pm 1 \)[/tex], [tex]\( \frac{\pm 2}{1} = \pm 2 \)[/tex], [tex]\( \frac{\pm 3}{1} = \pm 3 \)[/tex], [tex]\( \frac{\pm 6}{1} = \pm 6 \)[/tex].
- When [tex]\( q = 3 \)[/tex]: [tex]\( \frac{\pm 1}{3} = \pm \frac{1}{3} \)[/tex], [tex]\( \frac{\pm 2}{3} = \pm \frac{2}{3} \)[/tex], [tex]\( \frac{\pm 3}{3} = \pm 1 \)[/tex], [tex]\( \frac{\pm 6}{3} = \pm 2 \)[/tex].
- When [tex]\( q = 9 \)[/tex]: [tex]\( \frac{\pm 1}{9} = \pm \frac{1}{9} \)[/tex], [tex]\( \frac{\pm 2}{9} = \pm \frac{2}{9} \)[/tex], [tex]\( \frac{\pm 3}{9} = \pm \frac{1}{3} \)[/tex], [tex]\( \frac{\pm 6}{9} = \pm \frac{2}{3} \)[/tex].

6. Combine and remove duplicates:
Listing all unique combinations from above, we have the following possible rational zeros:

[tex]\[ \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{1}{9}, \pm \frac{2}{9} \][/tex]

So, the list of all possible rational zeros of the polynomial [tex]\( f(x) = 9x^4 - x^3 + 5x^2 - 2x - 6 \)[/tex] is:

[tex]\[ \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{1}{9}, \pm \frac{2}{9} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.