Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the length of the line segment [tex]\(\overline{WX}\)[/tex] with endpoints [tex]\(W(2, -7)\)[/tex] and [tex]\(X(5, -4)\)[/tex], we use the distance formula:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Here, [tex]\((x_1, y_1)\)[/tex] are the coordinates of point [tex]\(W\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are the coordinates of point [tex]\(X\)[/tex].
Given:
- [tex]\( W(2, -7) = (x_1, y_1) \)[/tex]
- [tex]\( X(5, -4) = (x_2, y_2) \)[/tex]
Substitute the coordinates into the distance formula:
[tex]\[ d = \sqrt{(5 - 2)^2 + (-4 + 7)^2} \][/tex]
Calculate each squared difference:
1. The difference in [tex]\( x\)[/tex] coordinates: [tex]\( 5 - 2 = 3 \)[/tex]
- Squaring this difference: [tex]\( 3^2 = 9 \)[/tex]
2. The difference in [tex]\( y \)[/tex] coordinates: [tex]\( -4 + 7 = 3 \)[/tex]
- Squaring this difference: [tex]\( 3^2 = 9 \)[/tex]
Add the squared differences:
[tex]\[ 9 + 9 = 18 \][/tex]
Take the square root of the sum:
[tex]\[ d = \sqrt{18} \][/tex]
Since [tex]\( \sqrt{18} \)[/tex] can be simplified further:
[tex]\[ \sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2} \][/tex]
Thus, the length of [tex]\(\overline{WX}\)[/tex] is:
[tex]\[ \boxed{3 \sqrt{2}} \][/tex]
Therefore, the correct answer is [tex]\( \boxed{E} \)[/tex].
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Here, [tex]\((x_1, y_1)\)[/tex] are the coordinates of point [tex]\(W\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are the coordinates of point [tex]\(X\)[/tex].
Given:
- [tex]\( W(2, -7) = (x_1, y_1) \)[/tex]
- [tex]\( X(5, -4) = (x_2, y_2) \)[/tex]
Substitute the coordinates into the distance formula:
[tex]\[ d = \sqrt{(5 - 2)^2 + (-4 + 7)^2} \][/tex]
Calculate each squared difference:
1. The difference in [tex]\( x\)[/tex] coordinates: [tex]\( 5 - 2 = 3 \)[/tex]
- Squaring this difference: [tex]\( 3^2 = 9 \)[/tex]
2. The difference in [tex]\( y \)[/tex] coordinates: [tex]\( -4 + 7 = 3 \)[/tex]
- Squaring this difference: [tex]\( 3^2 = 9 \)[/tex]
Add the squared differences:
[tex]\[ 9 + 9 = 18 \][/tex]
Take the square root of the sum:
[tex]\[ d = \sqrt{18} \][/tex]
Since [tex]\( \sqrt{18} \)[/tex] can be simplified further:
[tex]\[ \sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2} \][/tex]
Thus, the length of [tex]\(\overline{WX}\)[/tex] is:
[tex]\[ \boxed{3 \sqrt{2}} \][/tex]
Therefore, the correct answer is [tex]\( \boxed{E} \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.