Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the equation [tex]\(x^2 + 4 = 0\)[/tex], we will follow a systematic approach:
1. Rewrite the equation:
[tex]\[ x^2 + 4 = 0 \][/tex]
2. Isolate the [tex]\(x^2\)[/tex] term:
[tex]\[ x^2 = -4 \][/tex]
3. Recognize that we need to take the square root of both sides.
4. Take the square root of both sides:
[tex]\[ x = \pm \sqrt{-4} \][/tex]
5. Simplify the square root of [tex]\(-4\)[/tex]:
[tex]\[ \sqrt{-4} = \sqrt{4 \cdot (-1)} = \sqrt{4} \cdot \sqrt{-1} \][/tex]
Knowing that [tex]\(\sqrt{4} = 2\)[/tex] and [tex]\(\sqrt{-1} = i\)[/tex]:
[tex]\[ \sqrt{-4} = 2i \][/tex]
Thus, the solutions to the equation [tex]\(x^2 + 4 = 0\)[/tex] are:
[tex]\[ x = \pm 2i \][/tex]
So, the correct answer is:
[tex]\[ x = \pm 2i \][/tex]
1. Rewrite the equation:
[tex]\[ x^2 + 4 = 0 \][/tex]
2. Isolate the [tex]\(x^2\)[/tex] term:
[tex]\[ x^2 = -4 \][/tex]
3. Recognize that we need to take the square root of both sides.
4. Take the square root of both sides:
[tex]\[ x = \pm \sqrt{-4} \][/tex]
5. Simplify the square root of [tex]\(-4\)[/tex]:
[tex]\[ \sqrt{-4} = \sqrt{4 \cdot (-1)} = \sqrt{4} \cdot \sqrt{-1} \][/tex]
Knowing that [tex]\(\sqrt{4} = 2\)[/tex] and [tex]\(\sqrt{-1} = i\)[/tex]:
[tex]\[ \sqrt{-4} = 2i \][/tex]
Thus, the solutions to the equation [tex]\(x^2 + 4 = 0\)[/tex] are:
[tex]\[ x = \pm 2i \][/tex]
So, the correct answer is:
[tex]\[ x = \pm 2i \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.