Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Solve the compound inequality:

[tex]\(2x - 4 \ \textless \ -10\)[/tex] or [tex]\(4x + 4 \geq 16\)[/tex]

Graph the solution on the number line.


Sagot :

To solve the compound inequality [tex]\( 2x - 4 < -10 \)[/tex] or [tex]\( 4x + 4 \geq 16 \)[/tex], we will handle each inequality separately and then combine the results.

### Step-by-Step Solution

#### Solving the first inequality [tex]\( 2x - 4 < -10 \)[/tex]

1. Isolate the variable [tex]\( x \)[/tex]:
[tex]\[ 2x - 4 < -10 \][/tex]

2. Add 4 to both sides:
[tex]\[ 2x - 4 + 4 < -10 + 4 \\ 2x < -6 \][/tex]

3. Divide both sides by 2:
[tex]\[ x < \frac{-6}{2} \\ x < -3 \][/tex]

So, the solution to the first inequality is:
[tex]\[ x < -3 \][/tex]

#### Solving the second inequality [tex]\( 4x + 4 \geq 16 \)[/tex]

1. Isolate the variable [tex]\( x \)[/tex]:
[tex]\[ 4x + 4 \geq 16 \][/tex]

2. Subtract 4 from both sides:
[tex]\[ 4x + 4 - 4 \geq 16 - 4 \\ 4x \geq 12 \][/tex]

3. Divide both sides by 4:
[tex]\[ x \geq \frac{12}{4} \\ x \geq 3 \][/tex]

So, the solution to the second inequality is:
[tex]\[ x \geq 3 \][/tex]

### Combine the Solutions

Since the original inequality is connected by "or," we combine the two sets of solutions. This means we are looking for [tex]\( x \)[/tex] values that satisfy either one or both of the inequalities. The combined solution is:
[tex]\[ x < -3 \quad \text{or} \quad x \geq 3 \][/tex]

### Graphing the Solution on the Number Line

1. Draw a number line.
2. For [tex]\( x < -3 \)[/tex]:
- Shade all values to the left of -3 (but do not include -3).
- Use an open circle at -3 to indicate that -3 is not included.
3. For [tex]\( x \geq 3 \)[/tex]:
- Shade all values to the right of and including 3.
- Use a closed circle at 3 to indicate that 3 is included.

The number line should look like this:

[tex]\[ \begin{array}{c} \ \ \ \ \ \bullet \ \ \ \ \ \ \ \ \ \ \ \ \bullet\\ \ <<<<<|>>>>>>>> \quad \quad \\ \quad -3 \quad \quad 3\\ \end{array} \][/tex]

In summary, the combined solution to the inequality [tex]\( 2x - 4 < -10 \)[/tex] or [tex]\( 4x + 4 \geq 16 \)[/tex] is [tex]\( x < -3 \)[/tex] or [tex]\( x \geq 3 \)[/tex], and the graph on the number line represents these intervals.