Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which polynomial is in standard form, we need to check if each polynomial is written in descending order of the powers of [tex]\( x \)[/tex]. A polynomial is in standard form when the terms are ordered from the highest degree term to the lowest degree term.
Let's analyze each given polynomial:
1. [tex]\( 1 + 2x - 8x^2 + 6x^3 \)[/tex]
Rearrange in descending order based on the powers of [tex]\( x \)[/tex]:
[tex]\[ 6x^3 - 8x^2 + 2x + 1 \][/tex]
2. [tex]\( 2x^2 + 6x^3 - 9x + 12 \)[/tex]
Rearrange in descending order based on the powers of [tex]\( x \)[/tex]:
[tex]\[ 6x^3 + 2x^2 - 9x + 12 \][/tex]
3. [tex]\( 6x^3 + 5x - 3x^2 + 2 \)[/tex]
Rearrange in descending order based on the powers of [tex]\( x \)[/tex]:
[tex]\[ 6x^3 - 3x^2 + 5x + 2 \][/tex]
4. [tex]\( 2x^3 + 4x^2 - 7x + 5 \)[/tex]
Rearrange in descending order based on the powers of [tex]\( x \)[/tex]:
[tex]\[ 2x^3 + 4x^2 - 7x + 5 \][/tex]
Now, let's check each polynomial to see if it is already in standard form:
1. [tex]\( 1 + 2x - 8x^2 + 6x^3 \)[/tex]
- Rearranged form: [tex]\( 6x^3 - 8x^2 + 2x + 1 \)[/tex]
- This polynomial is not in standard form initially.
2. [tex]\( 2x^2 + 6x^3 - 9x + 12 \)[/tex]
- Rearranged form: [tex]\( 6x^3 + 2x^2 - 9x + 12 \)[/tex]
- This polynomial is not in standard form initially.
3. [tex]\( 6x^3 + 5x - 3x^2 + 2 \)[/tex]
- Rearranged form: [tex]\( 6x^3 - 3x^2 + 5x + 2 \)[/tex]
- This polynomial is in standard form.
4. [tex]\( 2x^3 + 4x^2 - 7x + 5 \)[/tex]
- Rearranged form: [tex]\( 2x^3 + 4x^2 - 7x + 5 \)[/tex]
- This polynomial is in standard form.
Since we need to identify the polynomial from those initially provided, the given indices need to match your analysis. Based on the analysis, none of the given polynomials are in standard form unless rearranged. If we start with checking their initial configuration towards the given answer pattern, it appears none naturally align to that requirement.
So, the result is:
```None```
Let's analyze each given polynomial:
1. [tex]\( 1 + 2x - 8x^2 + 6x^3 \)[/tex]
Rearrange in descending order based on the powers of [tex]\( x \)[/tex]:
[tex]\[ 6x^3 - 8x^2 + 2x + 1 \][/tex]
2. [tex]\( 2x^2 + 6x^3 - 9x + 12 \)[/tex]
Rearrange in descending order based on the powers of [tex]\( x \)[/tex]:
[tex]\[ 6x^3 + 2x^2 - 9x + 12 \][/tex]
3. [tex]\( 6x^3 + 5x - 3x^2 + 2 \)[/tex]
Rearrange in descending order based on the powers of [tex]\( x \)[/tex]:
[tex]\[ 6x^3 - 3x^2 + 5x + 2 \][/tex]
4. [tex]\( 2x^3 + 4x^2 - 7x + 5 \)[/tex]
Rearrange in descending order based on the powers of [tex]\( x \)[/tex]:
[tex]\[ 2x^3 + 4x^2 - 7x + 5 \][/tex]
Now, let's check each polynomial to see if it is already in standard form:
1. [tex]\( 1 + 2x - 8x^2 + 6x^3 \)[/tex]
- Rearranged form: [tex]\( 6x^3 - 8x^2 + 2x + 1 \)[/tex]
- This polynomial is not in standard form initially.
2. [tex]\( 2x^2 + 6x^3 - 9x + 12 \)[/tex]
- Rearranged form: [tex]\( 6x^3 + 2x^2 - 9x + 12 \)[/tex]
- This polynomial is not in standard form initially.
3. [tex]\( 6x^3 + 5x - 3x^2 + 2 \)[/tex]
- Rearranged form: [tex]\( 6x^3 - 3x^2 + 5x + 2 \)[/tex]
- This polynomial is in standard form.
4. [tex]\( 2x^3 + 4x^2 - 7x + 5 \)[/tex]
- Rearranged form: [tex]\( 2x^3 + 4x^2 - 7x + 5 \)[/tex]
- This polynomial is in standard form.
Since we need to identify the polynomial from those initially provided, the given indices need to match your analysis. Based on the analysis, none of the given polynomials are in standard form unless rearranged. If we start with checking their initial configuration towards the given answer pattern, it appears none naturally align to that requirement.
So, the result is:
```None```
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.