At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Here is a detailed, step-by-step solution to solve for the mass of aluminum under the given conditions:
1. Identify the given values:
- Energy absorbed by aluminum, [tex]\( Q \)[/tex]: 1250 Joules (J)
- Initial temperature, [tex]\( T_{\text{initial}} \)[/tex]: [tex]\( 25^{\circ}C \)[/tex]
- Final temperature, [tex]\( T_{\text{final}} \)[/tex]: [tex]\( 35^{\circ}C \)[/tex]
- Specific heat capacity of aluminum, [tex]\( c \)[/tex]: [tex]\( 0.903 \, \text{J/g}^{\circ}\text{C} \)[/tex]
2. Calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
- [tex]\( \Delta T = T_{\text{final}} - T_{\text{initial}} \)[/tex]
- [tex]\( \Delta T = 35^{\circ}C - 25^{\circ}C = 10^{\circ}C \)[/tex]
3. Use the formula for heat absorption:
- The formula for heat absorption is [tex]\( Q = mc\Delta T \)[/tex]
- Here, [tex]\( Q \)[/tex] is the energy absorbed, [tex]\( m \)[/tex] is the mass of the substance, [tex]\( c \)[/tex] is the specific heat capacity, and [tex]\( \Delta T \)[/tex] is the change in temperature.
4. Rearrange the formula to solve for mass ([tex]\( m \)[/tex]):
- To solve for mass, rearrange the formula to [tex]\( m = \frac{Q}{c\Delta T} \)[/tex]
5. Substitute the known values into the rearranged formula:
- [tex]\( m = \frac{1250 \, \text{J}}{0.903 \, \text{J/g}^{\circ}\text{C} \times 10^{\circ}C} \)[/tex]
6. Perform the calculation:
- [tex]\( m = \frac{1250}{0.903 \times 10} \)[/tex]
- [tex]\( m = \frac{1250}{9.03} \)[/tex]
- [tex]\( m \approx 138.43 \, \text{g} \)[/tex]
So, after absorbing 1250 Joules of energy, and given the specific heat capacity of aluminum is [tex]\( 0.903 \, \text{J/g}^{\circ}\text{C} \)[/tex], the mass of the aluminum is approximately [tex]\( 138.43 \)[/tex] grams.
1. Identify the given values:
- Energy absorbed by aluminum, [tex]\( Q \)[/tex]: 1250 Joules (J)
- Initial temperature, [tex]\( T_{\text{initial}} \)[/tex]: [tex]\( 25^{\circ}C \)[/tex]
- Final temperature, [tex]\( T_{\text{final}} \)[/tex]: [tex]\( 35^{\circ}C \)[/tex]
- Specific heat capacity of aluminum, [tex]\( c \)[/tex]: [tex]\( 0.903 \, \text{J/g}^{\circ}\text{C} \)[/tex]
2. Calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
- [tex]\( \Delta T = T_{\text{final}} - T_{\text{initial}} \)[/tex]
- [tex]\( \Delta T = 35^{\circ}C - 25^{\circ}C = 10^{\circ}C \)[/tex]
3. Use the formula for heat absorption:
- The formula for heat absorption is [tex]\( Q = mc\Delta T \)[/tex]
- Here, [tex]\( Q \)[/tex] is the energy absorbed, [tex]\( m \)[/tex] is the mass of the substance, [tex]\( c \)[/tex] is the specific heat capacity, and [tex]\( \Delta T \)[/tex] is the change in temperature.
4. Rearrange the formula to solve for mass ([tex]\( m \)[/tex]):
- To solve for mass, rearrange the formula to [tex]\( m = \frac{Q}{c\Delta T} \)[/tex]
5. Substitute the known values into the rearranged formula:
- [tex]\( m = \frac{1250 \, \text{J}}{0.903 \, \text{J/g}^{\circ}\text{C} \times 10^{\circ}C} \)[/tex]
6. Perform the calculation:
- [tex]\( m = \frac{1250}{0.903 \times 10} \)[/tex]
- [tex]\( m = \frac{1250}{9.03} \)[/tex]
- [tex]\( m \approx 138.43 \, \text{g} \)[/tex]
So, after absorbing 1250 Joules of energy, and given the specific heat capacity of aluminum is [tex]\( 0.903 \, \text{J/g}^{\circ}\text{C} \)[/tex], the mass of the aluminum is approximately [tex]\( 138.43 \)[/tex] grams.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.