Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Here is a detailed, step-by-step solution to solve for the mass of aluminum under the given conditions:
1. Identify the given values:
- Energy absorbed by aluminum, [tex]\( Q \)[/tex]: 1250 Joules (J)
- Initial temperature, [tex]\( T_{\text{initial}} \)[/tex]: [tex]\( 25^{\circ}C \)[/tex]
- Final temperature, [tex]\( T_{\text{final}} \)[/tex]: [tex]\( 35^{\circ}C \)[/tex]
- Specific heat capacity of aluminum, [tex]\( c \)[/tex]: [tex]\( 0.903 \, \text{J/g}^{\circ}\text{C} \)[/tex]
2. Calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
- [tex]\( \Delta T = T_{\text{final}} - T_{\text{initial}} \)[/tex]
- [tex]\( \Delta T = 35^{\circ}C - 25^{\circ}C = 10^{\circ}C \)[/tex]
3. Use the formula for heat absorption:
- The formula for heat absorption is [tex]\( Q = mc\Delta T \)[/tex]
- Here, [tex]\( Q \)[/tex] is the energy absorbed, [tex]\( m \)[/tex] is the mass of the substance, [tex]\( c \)[/tex] is the specific heat capacity, and [tex]\( \Delta T \)[/tex] is the change in temperature.
4. Rearrange the formula to solve for mass ([tex]\( m \)[/tex]):
- To solve for mass, rearrange the formula to [tex]\( m = \frac{Q}{c\Delta T} \)[/tex]
5. Substitute the known values into the rearranged formula:
- [tex]\( m = \frac{1250 \, \text{J}}{0.903 \, \text{J/g}^{\circ}\text{C} \times 10^{\circ}C} \)[/tex]
6. Perform the calculation:
- [tex]\( m = \frac{1250}{0.903 \times 10} \)[/tex]
- [tex]\( m = \frac{1250}{9.03} \)[/tex]
- [tex]\( m \approx 138.43 \, \text{g} \)[/tex]
So, after absorbing 1250 Joules of energy, and given the specific heat capacity of aluminum is [tex]\( 0.903 \, \text{J/g}^{\circ}\text{C} \)[/tex], the mass of the aluminum is approximately [tex]\( 138.43 \)[/tex] grams.
1. Identify the given values:
- Energy absorbed by aluminum, [tex]\( Q \)[/tex]: 1250 Joules (J)
- Initial temperature, [tex]\( T_{\text{initial}} \)[/tex]: [tex]\( 25^{\circ}C \)[/tex]
- Final temperature, [tex]\( T_{\text{final}} \)[/tex]: [tex]\( 35^{\circ}C \)[/tex]
- Specific heat capacity of aluminum, [tex]\( c \)[/tex]: [tex]\( 0.903 \, \text{J/g}^{\circ}\text{C} \)[/tex]
2. Calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
- [tex]\( \Delta T = T_{\text{final}} - T_{\text{initial}} \)[/tex]
- [tex]\( \Delta T = 35^{\circ}C - 25^{\circ}C = 10^{\circ}C \)[/tex]
3. Use the formula for heat absorption:
- The formula for heat absorption is [tex]\( Q = mc\Delta T \)[/tex]
- Here, [tex]\( Q \)[/tex] is the energy absorbed, [tex]\( m \)[/tex] is the mass of the substance, [tex]\( c \)[/tex] is the specific heat capacity, and [tex]\( \Delta T \)[/tex] is the change in temperature.
4. Rearrange the formula to solve for mass ([tex]\( m \)[/tex]):
- To solve for mass, rearrange the formula to [tex]\( m = \frac{Q}{c\Delta T} \)[/tex]
5. Substitute the known values into the rearranged formula:
- [tex]\( m = \frac{1250 \, \text{J}}{0.903 \, \text{J/g}^{\circ}\text{C} \times 10^{\circ}C} \)[/tex]
6. Perform the calculation:
- [tex]\( m = \frac{1250}{0.903 \times 10} \)[/tex]
- [tex]\( m = \frac{1250}{9.03} \)[/tex]
- [tex]\( m \approx 138.43 \, \text{g} \)[/tex]
So, after absorbing 1250 Joules of energy, and given the specific heat capacity of aluminum is [tex]\( 0.903 \, \text{J/g}^{\circ}\text{C} \)[/tex], the mass of the aluminum is approximately [tex]\( 138.43 \)[/tex] grams.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.