Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Karen found that the solution to [tex]\(x - 7 + 5x = 36\)[/tex] is [tex]\(x = 6\)[/tex]. Which of these could be the way she found the solution?

A. Add [tex]\(x - 7 + 5x\)[/tex], add 36 to both sides of the equation.
B. Add [tex]\(x + 5x\)[/tex], subtract 7 from both sides of the equation.
C. Add [tex]\(x + 5x\)[/tex], add 7 to both sides of the equation.
D. Add [tex]\(-7\)[/tex] and [tex]\(5x\)[/tex], subtract [tex]\(x\)[/tex] from both sides of the equation.


Sagot :

Let's start by examining the given equation step-by-step to find the correct way Karen could have found the solution.

The equation is:
[tex]\[ x - 7 + 5x = 36 \][/tex]

Step 1: Combine the like terms on the left side of the equation. The like terms here are [tex]\( x \)[/tex] and [tex]\( 5x \)[/tex]:

[tex]\[ (x + 5x) - 7 = 36 \][/tex]
[tex]\[ 6x - 7 = 36 \][/tex]

Step 2: To isolate the variable [tex]\( x \)[/tex], add 7 to both sides of the equation:

[tex]\[ 6x - 7 + 7 = 36 + 7 \][/tex]
[tex]\[ 6x = 43 \][/tex]

Step 3: Solve for [tex]\( x \)[/tex] by dividing both sides of the equation by 6:
[tex]\[ x = \frac{43}{6} \][/tex]

Thus, the correct option is:
[tex]\[ \boxed{\text{Add } x + 5x, \text{add 7 to both sides of the equation.}} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.