At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure! Let's determine whether the points [tex]\((-8, -1)\)[/tex], [tex]\((3, -8)\)[/tex], and [tex]\((3, -1)\)[/tex] form a right triangle. If they don't form a right triangle, we will determine whether the triangle is isosceles or scalene. I will walk you through each step to reach a conclusion.
### Step 1: Calculate the Squared Distances Between the Points
Firstly, we need to determine the squared distances between each pair of points. The formula for the distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{Distance}^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 \][/tex]
Let's calculate these squared distances.
1. Between Point 1 [tex]\((-8, -1)\)[/tex] and Point 2 [tex]\((3, -8)\)[/tex]:
[tex]\[ d_1 = (3 - (-8))^2 + (-8 - (-1))^2 \][/tex]
[tex]\[ d_1 = (3 + 8)^2 + (-8 + 1)^2 \][/tex]
[tex]\[ d_1 = 11^2 + (-7)^2 \][/tex]
[tex]\[ d_1 = 121 + 49 \][/tex]
[tex]\[ d_1 = 170 \][/tex]
2. Between Point 2 [tex]\((3, -8)\)[/tex] and Point 3 [tex]\((3, -1)\)[/tex]:
[tex]\[ d_2 = (3 - 3)^2 + (-1 - (-8))^2 \][/tex]
[tex]\[ d_2 = 0^2 + (-1 + 8)^2 \][/tex]
[tex]\[ d_2 = 0 + 7^2 \][/tex]
[tex]\[ d_2 = 49 \][/tex]
3. Between Point 3 [tex]\((3, -1)\)[/tex] and Point 1 [tex]\((-8, -1)\)[/tex]:
[tex]\[ d_3 = (-8 - 3)^2 + (-1 - (-1))^2 \][/tex]
[tex]\[ d_3 = (-8 - 3)^2 + 0^2 \][/tex]
[tex]\[ d_3 = (-11)^2 + 0 \][/tex]
[tex]\[ d_3 = 121 \][/tex]
### Step 2: Check for a Right Triangle
Now that we have the squared distances [tex]\(d_1\)[/tex], [tex]\(d_2\)[/tex], and [tex]\(d_3\)[/tex], we need to check if these distances satisfy the Pythagorean theorem. The theorem states that for a right triangle with sides [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] (where [tex]\(c\)[/tex] is the hypotenuse), the following must hold true:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
We will check this by verifying if any combination of our squared distances equals another squared distance:
[tex]\[ d_1 + d_2 = 170 + 49 = 219 \quad \text{does not equal} \quad d_3 = 121 \][/tex]
[tex]\[ d_1 + d_3 = 170 + 121 = 291 \quad \text{does not equal} \quad d_2 = 49 \][/tex]
[tex]\[ d_2 + d_3 = 49 + 121 = 170 \quad \text{equals} \quad d_1 = 170 \][/tex]
Since one of the equations holds true, [tex]\(d_2 + d_3 = d_1\)[/tex], the points form a right triangle.
### Step 3: Conclusion
The points [tex]\((-8, -1)\)[/tex], [tex]\((3, -8)\)[/tex], and [tex]\((3, -1)\)[/tex] form a right triangle based on the squared distances satisfying the Pythagorean theorem.
So, the conclusive type of triangle formed by these points is a right triangle.
### Step 1: Calculate the Squared Distances Between the Points
Firstly, we need to determine the squared distances between each pair of points. The formula for the distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{Distance}^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 \][/tex]
Let's calculate these squared distances.
1. Between Point 1 [tex]\((-8, -1)\)[/tex] and Point 2 [tex]\((3, -8)\)[/tex]:
[tex]\[ d_1 = (3 - (-8))^2 + (-8 - (-1))^2 \][/tex]
[tex]\[ d_1 = (3 + 8)^2 + (-8 + 1)^2 \][/tex]
[tex]\[ d_1 = 11^2 + (-7)^2 \][/tex]
[tex]\[ d_1 = 121 + 49 \][/tex]
[tex]\[ d_1 = 170 \][/tex]
2. Between Point 2 [tex]\((3, -8)\)[/tex] and Point 3 [tex]\((3, -1)\)[/tex]:
[tex]\[ d_2 = (3 - 3)^2 + (-1 - (-8))^2 \][/tex]
[tex]\[ d_2 = 0^2 + (-1 + 8)^2 \][/tex]
[tex]\[ d_2 = 0 + 7^2 \][/tex]
[tex]\[ d_2 = 49 \][/tex]
3. Between Point 3 [tex]\((3, -1)\)[/tex] and Point 1 [tex]\((-8, -1)\)[/tex]:
[tex]\[ d_3 = (-8 - 3)^2 + (-1 - (-1))^2 \][/tex]
[tex]\[ d_3 = (-8 - 3)^2 + 0^2 \][/tex]
[tex]\[ d_3 = (-11)^2 + 0 \][/tex]
[tex]\[ d_3 = 121 \][/tex]
### Step 2: Check for a Right Triangle
Now that we have the squared distances [tex]\(d_1\)[/tex], [tex]\(d_2\)[/tex], and [tex]\(d_3\)[/tex], we need to check if these distances satisfy the Pythagorean theorem. The theorem states that for a right triangle with sides [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] (where [tex]\(c\)[/tex] is the hypotenuse), the following must hold true:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
We will check this by verifying if any combination of our squared distances equals another squared distance:
[tex]\[ d_1 + d_2 = 170 + 49 = 219 \quad \text{does not equal} \quad d_3 = 121 \][/tex]
[tex]\[ d_1 + d_3 = 170 + 121 = 291 \quad \text{does not equal} \quad d_2 = 49 \][/tex]
[tex]\[ d_2 + d_3 = 49 + 121 = 170 \quad \text{equals} \quad d_1 = 170 \][/tex]
Since one of the equations holds true, [tex]\(d_2 + d_3 = d_1\)[/tex], the points form a right triangle.
### Step 3: Conclusion
The points [tex]\((-8, -1)\)[/tex], [tex]\((3, -8)\)[/tex], and [tex]\((3, -1)\)[/tex] form a right triangle based on the squared distances satisfying the Pythagorean theorem.
So, the conclusive type of triangle formed by these points is a right triangle.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.