Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To graph the function [tex]\( g(x) = \frac{5}{8}(x+4)^2 - 3 \)[/tex] based on the original function [tex]\( f(x) = x^2 \)[/tex], we need to apply a sequence of transformations. Here are the step-by-step transformations required:
1. Horizontal Shift Left by 4 Units:
- Start with the original function [tex]\( f(x) = x^2 \)[/tex].
- To shift the graph horizontally to the left by 4 units, we replace [tex]\( x \)[/tex] with [tex]\( x + 4 \)[/tex]. The new function becomes [tex]\( f(x + 4) = (x + 4)^2 \)[/tex].
2. Vertical Stretch by a Factor of [tex]\(\frac{5}{8}\)[/tex]:
- Now take the function [tex]\( (x + 4)^2 \)[/tex].
- To apply a vertical stretch by a factor of [tex]\(\frac{5}{8}\)[/tex], we multiply the entire function by [tex]\(\frac{5}{8}\)[/tex]. The resulting function is [tex]\( \frac{5}{8} (x + 4)^2 \)[/tex].
3. Vertical Shift Down by 3 Units:
- Finally, take the vertically stretched function [tex]\( \frac{5}{8} (x + 4)^2 \)[/tex].
- To shift the graph vertically downward by 3 units, we subtract 3 from the entire function. The final function becomes [tex]\( \frac{5}{8} (x + 4)^2 - 3 \)[/tex].
To summarize, the sequence of transformations required to graph [tex]\( g(x) = \frac{5}{8}(x+4)^2 - 3 \)[/tex] based on [tex]\( f(x) = x^2 \)[/tex] are:
1. Horizontal shift left by 4 units.
2. Vertical stretch by a factor of [tex]\(\frac{5}{8}\)[/tex].
3. Vertical shift down by 3 units.
1. Horizontal Shift Left by 4 Units:
- Start with the original function [tex]\( f(x) = x^2 \)[/tex].
- To shift the graph horizontally to the left by 4 units, we replace [tex]\( x \)[/tex] with [tex]\( x + 4 \)[/tex]. The new function becomes [tex]\( f(x + 4) = (x + 4)^2 \)[/tex].
2. Vertical Stretch by a Factor of [tex]\(\frac{5}{8}\)[/tex]:
- Now take the function [tex]\( (x + 4)^2 \)[/tex].
- To apply a vertical stretch by a factor of [tex]\(\frac{5}{8}\)[/tex], we multiply the entire function by [tex]\(\frac{5}{8}\)[/tex]. The resulting function is [tex]\( \frac{5}{8} (x + 4)^2 \)[/tex].
3. Vertical Shift Down by 3 Units:
- Finally, take the vertically stretched function [tex]\( \frac{5}{8} (x + 4)^2 \)[/tex].
- To shift the graph vertically downward by 3 units, we subtract 3 from the entire function. The final function becomes [tex]\( \frac{5}{8} (x + 4)^2 - 3 \)[/tex].
To summarize, the sequence of transformations required to graph [tex]\( g(x) = \frac{5}{8}(x+4)^2 - 3 \)[/tex] based on [tex]\( f(x) = x^2 \)[/tex] are:
1. Horizontal shift left by 4 units.
2. Vertical stretch by a factor of [tex]\(\frac{5}{8}\)[/tex].
3. Vertical shift down by 3 units.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.