Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the equation of the line that passes through the points [tex]\((7, -9)\)[/tex] and [tex]\((4, 3)\)[/tex], we need to follow these steps:
1. Calculate the Slope (m):
The formula to find the slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points [tex]\((7, -9)\)[/tex] and [tex]\((4, 3)\)[/tex]:
[tex]\[ m = \frac{3 - (-9)}{4 - 7} = \frac{3 + 9}{4 - 7} = \frac{12}{-3} = -4 \][/tex]
Therefore, the slope [tex]\(m\)[/tex] is [tex]\(-4\)[/tex].
2. Find the y-intercept (b):
We use the slope-intercept form of the line equation, [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept. We already have [tex]\(m = -4\)[/tex]. Now we need to find [tex]\(b\)[/tex].
We can use one of the points to solve for [tex]\(b\)[/tex]. Let's use the point [tex]\((7, -9)\)[/tex]:
[tex]\[ y = mx + b \][/tex]
Substituting in [tex]\(x = 7\)[/tex], [tex]\(y = -9\)[/tex], and [tex]\(m = -4\)[/tex]:
[tex]\[ -9 = -4(7) + b \][/tex]
[tex]\[ -9 = -28 + b \][/tex]
Solving for [tex]\(b\)[/tex]:
[tex]\[ b = -9 + 28 = 19 \][/tex]
Therefore, the y-intercept [tex]\(b\)[/tex] is [tex]\(19\)[/tex].
3. Write the Equation:
Now that we have the slope [tex]\(m = -4\)[/tex] and the y-intercept [tex]\(b = 19\)[/tex], we can write the equation of the line in slope-intercept form:
[tex]\[ y = -4x + 19 \][/tex]
So, the equation of the line that contains the points [tex]\((7, -9)\)[/tex] and [tex]\((4, 3)\)[/tex] is:
[tex]\[ y = -4x + 19 \][/tex]
1. Calculate the Slope (m):
The formula to find the slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points [tex]\((7, -9)\)[/tex] and [tex]\((4, 3)\)[/tex]:
[tex]\[ m = \frac{3 - (-9)}{4 - 7} = \frac{3 + 9}{4 - 7} = \frac{12}{-3} = -4 \][/tex]
Therefore, the slope [tex]\(m\)[/tex] is [tex]\(-4\)[/tex].
2. Find the y-intercept (b):
We use the slope-intercept form of the line equation, [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept. We already have [tex]\(m = -4\)[/tex]. Now we need to find [tex]\(b\)[/tex].
We can use one of the points to solve for [tex]\(b\)[/tex]. Let's use the point [tex]\((7, -9)\)[/tex]:
[tex]\[ y = mx + b \][/tex]
Substituting in [tex]\(x = 7\)[/tex], [tex]\(y = -9\)[/tex], and [tex]\(m = -4\)[/tex]:
[tex]\[ -9 = -4(7) + b \][/tex]
[tex]\[ -9 = -28 + b \][/tex]
Solving for [tex]\(b\)[/tex]:
[tex]\[ b = -9 + 28 = 19 \][/tex]
Therefore, the y-intercept [tex]\(b\)[/tex] is [tex]\(19\)[/tex].
3. Write the Equation:
Now that we have the slope [tex]\(m = -4\)[/tex] and the y-intercept [tex]\(b = 19\)[/tex], we can write the equation of the line in slope-intercept form:
[tex]\[ y = -4x + 19 \][/tex]
So, the equation of the line that contains the points [tex]\((7, -9)\)[/tex] and [tex]\((4, 3)\)[/tex] is:
[tex]\[ y = -4x + 19 \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.