Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which of the given options is a like radical to [tex]\(\sqrt[3]{7x}\)[/tex], we need to identify the radicals that have the same radicand (the expression under the radical) and the same index (the root's degree). Here's the step-by-step analysis of each option:
1. Option 1: [tex]\(4(\sqrt[3]{7x})\)[/tex]
- Radicand: [tex]\(7x\)[/tex]
- Index: [tex]\(3\)[/tex]
- Coefficient: The number "4" is a coefficient and does not affect the classification of the radical.
2. Option 2: [tex]\(\sqrt{7x}\)[/tex]
- Radicand: [tex]\(7x\)[/tex]
- Index: This is a square root, which has an index of [tex]\(2\)[/tex].
3. Option 3: [tex]\(x(\sqrt[3]{7})\)[/tex]
- Radicand: [tex]\(7\)[/tex]
- Index: [tex]\(3\)[/tex]
- Note: The variable [tex]\(x\)[/tex] is outside the cube root and thus does not affect the radicand.
4. Option 4: [tex]\(7 \sqrt{x}\)[/tex]
- Radicand: [tex]\(x\)[/tex]
- Index: This is a square root, which has an index of [tex]\(2\)[/tex].
- Coefficient: The number "7" is a coefficient and does not affect the classification of the radical.
For a radical expression to be a like radical to [tex]\(\sqrt[3]{7x}\)[/tex], both the radicand and the index must match. Let's compare each option with the given radical [tex]\(\sqrt[3]{7x}\)[/tex]:
- Option 1 matches because it has the same radicand ([tex]\(7x\)[/tex]) and the same index ([tex]\(3\)[/tex]).
- Option 2 does not match because, even though the radicand ([tex]\(7x\)[/tex]) is the same, the index ([tex]\(2\)[/tex]) is different.
- Option 3 does not match because, although the index ([tex]\(3\)[/tex]) is the same, the radicand ([tex]\(7\)[/tex]) is different.
- Option 4 does not match because both the radicand ([tex]\(x\)[/tex]) and the index ([tex]\(2\)[/tex]) are different.
Thus, the only like radical to [tex]\(\sqrt[3]{7x}\)[/tex] among the given options is:
[tex]\[ 4(\sqrt[3]{7x}) \][/tex]
Therefore, the correct option is option 1.
1. Option 1: [tex]\(4(\sqrt[3]{7x})\)[/tex]
- Radicand: [tex]\(7x\)[/tex]
- Index: [tex]\(3\)[/tex]
- Coefficient: The number "4" is a coefficient and does not affect the classification of the radical.
2. Option 2: [tex]\(\sqrt{7x}\)[/tex]
- Radicand: [tex]\(7x\)[/tex]
- Index: This is a square root, which has an index of [tex]\(2\)[/tex].
3. Option 3: [tex]\(x(\sqrt[3]{7})\)[/tex]
- Radicand: [tex]\(7\)[/tex]
- Index: [tex]\(3\)[/tex]
- Note: The variable [tex]\(x\)[/tex] is outside the cube root and thus does not affect the radicand.
4. Option 4: [tex]\(7 \sqrt{x}\)[/tex]
- Radicand: [tex]\(x\)[/tex]
- Index: This is a square root, which has an index of [tex]\(2\)[/tex].
- Coefficient: The number "7" is a coefficient and does not affect the classification of the radical.
For a radical expression to be a like radical to [tex]\(\sqrt[3]{7x}\)[/tex], both the radicand and the index must match. Let's compare each option with the given radical [tex]\(\sqrt[3]{7x}\)[/tex]:
- Option 1 matches because it has the same radicand ([tex]\(7x\)[/tex]) and the same index ([tex]\(3\)[/tex]).
- Option 2 does not match because, even though the radicand ([tex]\(7x\)[/tex]) is the same, the index ([tex]\(2\)[/tex]) is different.
- Option 3 does not match because, although the index ([tex]\(3\)[/tex]) is the same, the radicand ([tex]\(7\)[/tex]) is different.
- Option 4 does not match because both the radicand ([tex]\(x\)[/tex]) and the index ([tex]\(2\)[/tex]) are different.
Thus, the only like radical to [tex]\(\sqrt[3]{7x}\)[/tex] among the given options is:
[tex]\[ 4(\sqrt[3]{7x}) \][/tex]
Therefore, the correct option is option 1.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.