Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which of the given options is a like radical to [tex]\(\sqrt[3]{7x}\)[/tex], we need to identify the radicals that have the same radicand (the expression under the radical) and the same index (the root's degree). Here's the step-by-step analysis of each option:
1. Option 1: [tex]\(4(\sqrt[3]{7x})\)[/tex]
- Radicand: [tex]\(7x\)[/tex]
- Index: [tex]\(3\)[/tex]
- Coefficient: The number "4" is a coefficient and does not affect the classification of the radical.
2. Option 2: [tex]\(\sqrt{7x}\)[/tex]
- Radicand: [tex]\(7x\)[/tex]
- Index: This is a square root, which has an index of [tex]\(2\)[/tex].
3. Option 3: [tex]\(x(\sqrt[3]{7})\)[/tex]
- Radicand: [tex]\(7\)[/tex]
- Index: [tex]\(3\)[/tex]
- Note: The variable [tex]\(x\)[/tex] is outside the cube root and thus does not affect the radicand.
4. Option 4: [tex]\(7 \sqrt{x}\)[/tex]
- Radicand: [tex]\(x\)[/tex]
- Index: This is a square root, which has an index of [tex]\(2\)[/tex].
- Coefficient: The number "7" is a coefficient and does not affect the classification of the radical.
For a radical expression to be a like radical to [tex]\(\sqrt[3]{7x}\)[/tex], both the radicand and the index must match. Let's compare each option with the given radical [tex]\(\sqrt[3]{7x}\)[/tex]:
- Option 1 matches because it has the same radicand ([tex]\(7x\)[/tex]) and the same index ([tex]\(3\)[/tex]).
- Option 2 does not match because, even though the radicand ([tex]\(7x\)[/tex]) is the same, the index ([tex]\(2\)[/tex]) is different.
- Option 3 does not match because, although the index ([tex]\(3\)[/tex]) is the same, the radicand ([tex]\(7\)[/tex]) is different.
- Option 4 does not match because both the radicand ([tex]\(x\)[/tex]) and the index ([tex]\(2\)[/tex]) are different.
Thus, the only like radical to [tex]\(\sqrt[3]{7x}\)[/tex] among the given options is:
[tex]\[ 4(\sqrt[3]{7x}) \][/tex]
Therefore, the correct option is option 1.
1. Option 1: [tex]\(4(\sqrt[3]{7x})\)[/tex]
- Radicand: [tex]\(7x\)[/tex]
- Index: [tex]\(3\)[/tex]
- Coefficient: The number "4" is a coefficient and does not affect the classification of the radical.
2. Option 2: [tex]\(\sqrt{7x}\)[/tex]
- Radicand: [tex]\(7x\)[/tex]
- Index: This is a square root, which has an index of [tex]\(2\)[/tex].
3. Option 3: [tex]\(x(\sqrt[3]{7})\)[/tex]
- Radicand: [tex]\(7\)[/tex]
- Index: [tex]\(3\)[/tex]
- Note: The variable [tex]\(x\)[/tex] is outside the cube root and thus does not affect the radicand.
4. Option 4: [tex]\(7 \sqrt{x}\)[/tex]
- Radicand: [tex]\(x\)[/tex]
- Index: This is a square root, which has an index of [tex]\(2\)[/tex].
- Coefficient: The number "7" is a coefficient and does not affect the classification of the radical.
For a radical expression to be a like radical to [tex]\(\sqrt[3]{7x}\)[/tex], both the radicand and the index must match. Let's compare each option with the given radical [tex]\(\sqrt[3]{7x}\)[/tex]:
- Option 1 matches because it has the same radicand ([tex]\(7x\)[/tex]) and the same index ([tex]\(3\)[/tex]).
- Option 2 does not match because, even though the radicand ([tex]\(7x\)[/tex]) is the same, the index ([tex]\(2\)[/tex]) is different.
- Option 3 does not match because, although the index ([tex]\(3\)[/tex]) is the same, the radicand ([tex]\(7\)[/tex]) is different.
- Option 4 does not match because both the radicand ([tex]\(x\)[/tex]) and the index ([tex]\(2\)[/tex]) are different.
Thus, the only like radical to [tex]\(\sqrt[3]{7x}\)[/tex] among the given options is:
[tex]\[ 4(\sqrt[3]{7x}) \][/tex]
Therefore, the correct option is option 1.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.