At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the problem of finding how much longer the side of a cube with a surface area of 180 square meters is compared to the side of a cube with a surface area of 120 square meters, let's break it down step-by-step:
1. Formulas and Given Data:
- Given formula for the side length of a cube in terms of its surface area [tex]\( S = \sqrt{\frac{SA}{6}} \)[/tex].
- The surface area of the first cube ([tex]\( SA1 \)[/tex]) is 180 square meters.
- The surface area of the second cube ([tex]\( SA2 \)[/tex]) is 120 square meters.
2. Calculate the Side Lengths:
- For cube 1 with [tex]\( SA1 = 180 \)[/tex]:
[tex]\[ s1 = \sqrt{\frac{180}{6}} = \sqrt{30} \][/tex]
- For cube 2 with [tex]\( SA2 = 120 \)[/tex]:
[tex]\[ s2 = \sqrt{\frac{120}{6}} = \sqrt{20} = 2\sqrt{5} \][/tex]
3. Find the Difference in Side Lengths:
- The difference in side lengths is given by:
[tex]\[ \text{side difference} = s1 - s2 = \sqrt{30} - 2\sqrt{5} \][/tex]
Therefore, the side of the cube with a surface area of 180 square meters is [tex]\(\sqrt{30} - 2\sqrt{5}\)[/tex] meters longer than the side of the cube with a surface area of 120 square meters. Hence, the correct answer is:
[tex]\[ \boxed{\sqrt{30} - 2\sqrt{5} \, \text{m}} \][/tex]
1. Formulas and Given Data:
- Given formula for the side length of a cube in terms of its surface area [tex]\( S = \sqrt{\frac{SA}{6}} \)[/tex].
- The surface area of the first cube ([tex]\( SA1 \)[/tex]) is 180 square meters.
- The surface area of the second cube ([tex]\( SA2 \)[/tex]) is 120 square meters.
2. Calculate the Side Lengths:
- For cube 1 with [tex]\( SA1 = 180 \)[/tex]:
[tex]\[ s1 = \sqrt{\frac{180}{6}} = \sqrt{30} \][/tex]
- For cube 2 with [tex]\( SA2 = 120 \)[/tex]:
[tex]\[ s2 = \sqrt{\frac{120}{6}} = \sqrt{20} = 2\sqrt{5} \][/tex]
3. Find the Difference in Side Lengths:
- The difference in side lengths is given by:
[tex]\[ \text{side difference} = s1 - s2 = \sqrt{30} - 2\sqrt{5} \][/tex]
Therefore, the side of the cube with a surface area of 180 square meters is [tex]\(\sqrt{30} - 2\sqrt{5}\)[/tex] meters longer than the side of the cube with a surface area of 120 square meters. Hence, the correct answer is:
[tex]\[ \boxed{\sqrt{30} - 2\sqrt{5} \, \text{m}} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.